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In the last episode...

We want to infer some latent information from observations.

Data: Get unlabeled data .

Modeling: De�ne a model that relates the latent variable of interest to the observations

.

Inference: Compute the posterior distribution , which can then be used in many

di�erent ways.

Learning: Estimate the unknown model parameters  by maximizing the log-marginal likelihood

 averaged over the dataset.

This corresponds to a form of unsupervised learning, using a generative modeling approach.

D = x  p (x)  { i ∼
i.i.d ⋆ }

i=1

N

p(x, z; θ) = p(x ∣ z; θ)p(z; θ)

p(z ∣ x; θ)

θ

ln p(x; θ)
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Today

We will focus on supervised learning with discriminative models.

The key concepts you should be familiar with at the end of this course are the following:

Supervised learning

Generative vs. discriminative model

Empirical risk minimization

Multinomial logistic regression (lab session)
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Supervised learning
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The term supervised means that, at training time, the input data samples  are labeled with

the information we will try to infer at test time. The labels are represented by .

Supervised Learning Unsupervised Learning
Labeled training data Unlabeled training data

2. Continuous case:
► Regression

Ex. application: head pose

1. Discrete case: («one-hot»)
► Classification

Ex. application: dog breed

3. Sparse case:
► Multi-classification

Ex. application: image
labelling

… …

Input
Labels/Targets

…

Input

1

0.6

0.1

0.3

13: Ger man Shepher d

man
pal m t r ee

phone

2. Continuous case: ( )

► Dimensionality
Reduction

1. Discrete case:

► Clustering

3. Sparse case:

► Dictionary Learning

Learned 
model

Unlabeled test data or

x  ∈i X

y  ∈i Y

Image credits: Antoine Deleforge, Inria, course given at Télécom Physique Strasbourg.
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Training time

At training time, our observations consist of (input, label) pairs, which are assumed to be i.i.d

according to some distribution :

For instance,  is a -dimensional input feature vector and  is a scalar label (e.g., a category or

a real value).

p (x, y)⋆

D = {(x  , y  ) ∈i i X × Y ∼i.i.d p (x, y)}  .⋆

i=1

N

x  i D y  i
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Test time

At test time, we only observe a new input data sample , from which we want to infer .

This means computing the posterior distribution , which depends on a set of parameters

 that have been estimated during the learning stage, at training time.

In supervised learning, we are often only interested in a point estimate , for instance:

classi�cation task:

regression task:

x y

p(y ∣ x; θ)
θ

 ŷ

 =ŷ  p(y =
k∈{1,...,C}
arg max k ∣ x; θ) ∈ {1, ...,C};

 =ŷ E  y ∈p(y∣x;θ) [ ] R.
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Supervised learning with generative modeling

We have access to a labeled dataset .

Generative modeling - we de�ne the joint distribution to explain how the input data  are

generated from the label :

Inference - we "invert" this generative model using Bayes theorem:

Learning - we estimate the unknown model parameters  by maximizing the log-likelihood

 averaged over the dataset :

No need to marginalize over  as it is observed in a supervised setting!

D = (x  , y  ) p (x, y)  { i i ∼
i.i.d ⋆ }

i=1

N

x
y

p(x, y; θ) = p(x ∣ y; θ)p(y; θ).

p(y ∣ x; θ) =  .
p(x; θ)

p(x ∣ y; θ)p(y; θ)

θ

ln p(x, y; θ) D

 E  [ln p(x, y; θ)].
θ

max p (x,y)⋆

y
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Supervised learning with discriminative modeling

We have access to a labeled dataset .

Discriminative modeling - we de�ne the joint distribution to directly explain how the label  is

obtained from the input data :

where  is non-informative (e.g., uniform after normalization) and does not depend on .

Inference - super easy, just evaluate the model!

Learning - we estimate the unknown model parameters  by maximizing the log-likelihood

 averaged over the dataset :

In supervised discriminative learning,  is often called the negative log-

likelihood (NLL) function, which can be confusing (e.g., torch.nn.NLLLoss).

D = (x  , y  ) p (x, y)  { i i ∼i.i.d ⋆ }
i=1

N

y

x

p(x, y; θ) = p(y ∣ x; θ)p(x),

p(x) θ

θ

ln p(x, y; θ) = ln p(y ∣ x; θ) + cst D

 E  ln p(x, y; θ) ⇔
θ

max p (x,y)⋆ [ ]  E  − ln p(y ∣ x; θ) .
θ

min p (x,y)⋆ [ ]

− ln p(y ∣ x; θ)
9
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3 fundamental examples
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Binary classi�cation example

Training data:  with  and .

Model: We assume there exists a function  such that

 and .

The model can be compactly rewritten using the following probability mass function (pmf) for

all :

The NLL function is called the binary cross-entropy:

(x, y) ∈ X × Y X = RD Y = {0, 1}

f(⋅; θ) : R ↦D [0, 1]

p(y = 1∣x; θ) = f(x; θ) p(y = 0∣x; θ) = 1 − f(x; θ)

y ∈ Y

p(y ∣ x; θ) = (f(x; θ)) (1 −
y

f(x; θ)) .
(1−y)

− ln p(y ∣ x; θ) = −y ln (f(x; θ)) − (1 − y) ln (1 − f(x; θ)).
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-class classi�cation example

Training data:  with  and .

Model: We assume there exists a function  such that

 for all  and .

It can be compactly rewritten using the following pmf for all :

The NLL function is called the cross-entropy:

C

(x, y) ∈ X × Y X = RD Y = {1, ...,C}

f(⋅; θ) : R ↦D [0, 1]C

p(y = k ∣ x; θ) = f  (x; θ)k k ∈ {1, ...,C}  f  (x; θ) =
k=1
∑
C

k 1

y ∈ Y

p(y ∣ x; θ) =  p(y =
k=1

∏
C

k ∣ x; θ) =1  y=k
 f  (x; θ) .

k=1

∏
C

k
1  y=k

− ln p(y ∣ x; θ) = −  1  ln (f  (x; θ)).
k=1

∑
C

y=k c
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Logistic regression vs. naive Bayes classi�ers

When  is an a�ne function of , this model is called (multinomial) logistic regression.

It is one of the simplest discriminative models for supervised classi�cation.

The most popular generative model for supervised classi�cation is called the naive Bayes
classi�er.

For a comparison between the generative and discriminative approches to supervised
classi�cation, see (Ng and Jordan, 2002).

f(x; θ) x

Ng, Andrew Y.; Jordan, Michael I. (2002). On discriminative vs. generative classi�ers: A comparison of logistic regression and naive Bayes. Advances in Neural Information Processing Systems (NIPS).
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Regression example

Training data:  with  and .

Model: We assume there exists a function  such that

.

The NLL gives the squared error:

(x,y) ∈ X × Y X = RP Y = RQ

f(⋅; θ) : R ↦P RQ

p(y ∣ x; θ) = N (y; f(x; θ), I) = (2π) exp ( −−Q/2
 ∥2

1 y − f(x; θ) ∥  2
2 )

− ln p(y ∣ x; θ) =  ∥
2
1

y − f(x; θ) ∥  2
2 + cst.
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Wrap-up

Data: Get the labeled training dataset .

Modeling/inference: De�ne .

Learning: Estimate  by minimizing  averaged over .

Having to de�ne a model as the expression of a probability mass/density function  can

be restrictive, and is actually not necessary.

A more general approach to supervised discriminative learning is based on the principle of

empirical risk minimization.

D = (x  , y  ) p (x, y)  { i i ∼i.i.d ⋆ }
i=1

N

p(y ∣ x; θ)

θ − ln p(y ∣ x; θ) D

p(y ∣ x; θ)
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Empirical risk minimization
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Classi�cation:

Regression:

Empirical risk minimization

Consider a function  produced by some learning algorithm. The predictions of this

function can be evaluated through a loss

such that  measures how close the prediction  from  is.

Examples of loss functions

f : X → Y

ℓ : Y × Y → R,

ℓ(y, f(x)) ≥ 0 f(x) y

ℓ(y, f(x)) = 1  y  f(x)=

ℓ(y, f(x)) = (y − f(x))2

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Let  denote the hypothesis space, i.e. the set of all functions  than can be produced by the

chosen learning algorithm.

We are looking for a function  with a small expected risk (or generalization error)

This means that for a given data generating distribution  and for a given hypothesis space

, the optimal model is

F f

f ∈ F

R(f) = E  ℓ(y, f(x)) =p (x,y)⋆ [ ] E  E  ℓ(y, f(x)) .p (x)⋆ [ p (y∣x)⋆ [ ]]

p (x, y)⋆

F

f =⋆ arg  R(f).
f∈F
min

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Unfortunately, since  is unknown, the expected risk cannot be evaluated and the optimal

model cannot be determined.

However, if we have i.i.d. training data , we can compute an estimate, the

empirical risk (or training error)

This estimate is unbiased and can be used for �nding a good enough approximation of . This

results into the empirical risk minimization principle:

p (x, y)⋆

D = {(x  , y  )}  i i i=1
N

(f , D) =R̂   ℓ(y  , f(x  )).
N

1

(x  ,y  )∈Di i

∑ i i

f ⋆

f  =D
⋆ arg  (f , D)

f∈F
min R̂

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Most supervised machine learning algorithms, including neural networks, implement empirical risk
minimization.

Under regularity assumptions, empirical risk minimizers converge:

 f  =
N→∞
lim D

⋆ f ⋆

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Regression example

Consider the joint probability distribution  induced by the data generating process

where ,  and  is an unknown polynomial of degree 3.

p (x, y)⋆

(x, y) ∼ p (x, y) ⇔⋆ x ∼ U([−10; 10]), ϵ ∼ N (0,σ ), y =2 g(x) + ϵ

x ∈ R y ∈ R g

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Regression is used to study the relationship between two continuous variables.

Of course, it can be extended to higher dimensions.

Image credit: https://noeliagorod.com/2019/05/21/machine-learning-for-everyone-in-simple-words-with-real-world-examples-yes-again/
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Step 1: De�ning the model

Our goal is to �nd a function  that makes good predictions on average over .

Consider the hypothesis space  of polynomials of degree 3 de�ned through their parameters

 such that

f p (x, y)⋆

f ∈ F

w ∈ R4

 ≜ŷ f(x;w) =  w  x

d=0

∑
3

d
d

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Step 2: De�ning the loss function

For this regression problem, we use the squared error loss

to measure how wrong the predictions are.

Therefore, our goal is to �nd the best value  such

ℓ(y, f(x;w)) = (y − f(x;w))2

w⋆

  

w⋆ = arg  R(w)
w

min

= arg  E  (y − f(x;w))
w

min p (x,y)⋆ [ 2]

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Step 3: Training

Given a large enough training set , the empirical risk minimization

principle tells us that a good estimate  of  can be found by minimizing the empirical risk:

D = {(x  , y  )∣i =i i 1, … ,N}
w  D

⋆ w⋆

  

w  D
⋆ = arg  (w, D)

w
min R̂

= arg    (y  − f(x  ;w))
w

min
N

1

(x  ,y  )∈Di i

∑ i i
2

= arg    (y  −  w  x  )
w

min
N

1

(x  ,y  )∈Di i

∑ i

d=0

∑
3

d i
d

2

= arg     −      

w
min

N

1

∥

∥

y

    

⎝

⎛y  1

y  2

…
y  N

⎠

⎞

X

    

⎝

⎛ x  …x  1
0

1
3

x  …x  2
0

2
3

…
x  …x  N

0
N
3 ⎠

⎞

⎝

⎛w  0

w  1

w  2

w  3
⎠

⎞

∥

∥2

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.

25

https://github.com/glouppe/info8010-deep-learning


This is ordinary least squares regression, for which the solution is known analytically:

In many situations, the problem is more di�cult and we cannot �nd the solution analytically. We

resort to iterative optimization algorithms, such as (variants of) gradient descent.

w  =D
⋆ (X X) X yT −1 T

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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The expected risk minimizer  within our hypothesis space  (polynomials of degree 3) is

 itself (i.e. the polynomial of degree 3 with the true parameters).

Therefore, on this toy problem, we can verify that  as .

f(x;w )⋆ F

g(x)

f(x;w  ) →D
⋆ f(x;w ) =⋆ g(x) N → ∞

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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What if we consider a hypothesis space  in which candidate functions  are either too "simple" or

too "complex" with respect to the true data generating process?

 = polynomials of degree 1

F f

F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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What if we consider a hypothesis space  in which candidate functions  are either too "simple" or

too "complex" with respect to the true data generating process?

 = polynomials of degree 2

F f

F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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What if we consider a hypothesis space  in which candidate functions  are either too "simple" or

too "complex" with respect to the true data generating process?

 = polynomials of degree 3

F f

F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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What if we consider a hypothesis space  in which candidate functions  are either too "simple" or

too "complex" with respect to the true data generating process?

 = polynomials of degree 4

F f

F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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What if we consider a hypothesis space  in which candidate functions  are either too "simple" or

too "complex" with respect to the true data generating process?

 = polynomials of degree 5

F f

F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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What if we consider a hypothesis space  in which candidate functions  are either too "simple" or

too "complex" with respect to the true data generating process?

 = polynomials of degree 10

F f

F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Error vs. degree  of the polynomial.d

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Bayes risk and estimator

Let  be the set of all functions .

We de�ne the Bayes risk as the minimal expected risk over all possible functions,

and call Bayes estimator the model  that achieves this minimum.

No model  can perform better than .

YX f : X → Y

R  =B  R(f),
f∈YX
min

f  B

f f  B

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.

31

https://github.com/glouppe/info8010-deep-learning


The capacity of an hypothesis space  induced by a learning algorithm intuitively represents the

ability to �nd a good model  that can �t any function, regardless of its complexity.

If the capacity is in�nite, we can �t any function, but in practice the capacity is always �nite.

The capacity can be controlled through hyper-parameters of the learning algorithm. For example:

The degree of the family of polynomials;

The number of layers in a neural network;

The number of training iterations;

Regularization terms.

F

f ∈ F

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.

32

https://github.com/glouppe/info8010-deep-learning


Under�tting and over�tting

If the capacity of  is too low, then  and  is large for any , including

 and . Such models  are said to under�t the data.

If the capacity of  is too high, then  or  is small.

However, because of the high capacity of the hypothesis space, the empirical risk minimizer 

could �t the training data arbitrarily well such that

This indicates that the empirical risk  is a poor estimator of the expected risk .

In this situation,  becomes too specialized with respect to the true data generating process,

 is said to over�t the data.

F f  ∈B / F R(f) − R  B f ∈ F

f ⋆ f  D
⋆ f

F f  ∈B F R(f ) −⋆ R  B

f  D
⋆

R(f  ) ≥D
⋆ R  ≥B (f  , D) ≥R̂ D

⋆ 0.

(f , D)R̂ D
⋆ R(f  )D

⋆

f  D
⋆

f  D
⋆

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Therefore, our goal is to adjust the capacity of the hypothesis space such that the expected risk of

the empirical risk minimizer (the generalization error)  gets as low as possible, and not

simply the empirical risk of the empirical risk minimizer (training error) .

R(f  )D
⋆

(f  , D)R̂ D
⋆

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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An unbiased estimate of the expected risk can be obtained by evaluating  on data 

independent from the training samples :

This test error estimate can be used to evaluate the actual performance of the model. However, it
should not be used, at the same time, for model selection.

f  D
⋆ D  test

D

(f  , D  ) =R̂ D
⋆

test   ℓ(y  , f  (x  ))
N  test

1

(x  ,y  )∈D  i i test

∑ i D
⋆

i

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Error vs. degree  of the polynomial.d

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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This should be avoided at all costs!

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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Instead, keep a separate validation set for tuning the hyper-parameters.

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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Bias-variance decomposition

Consider a �xed point  and the prediction  of the empirical risk minimizer at .

Then the local expected risk of  is

 is the local expected risk of the Bayes estimator. This term cannot be reduced.

 represents the discrepancy between  and .

x  =ŷ f  (x)D
⋆ x

f  D
⋆

  

R(f  ∣x)D
⋆ = E  (y − f  (x))p (y∣x)⋆ [ D

⋆ 2]

= E  (y − f  (x) + f  (x) − f  (x))p (y∣x)⋆ [ B B D
⋆ 2]

= E  (y − f  (x)) + E  (f  (x) − f  (x))p (y∣x)⋆ [ B
2] p (y∣x)⋆ [ B D

⋆ 2]

= R(f  ∣x) + (f  (x) − f  (x))B B D
⋆ 2

R(f  ∣x)B

(f  (x) −B f  (x))D
⋆ 2 f  B f  D

⋆

Remarks:

To go from the second to third line we used the fact that .

R(f) = E  ℓ(y, f(x)) =p (x,y)⋆ [ ] E  E  ℓ(y, f(x)) =p (x)⋆ [ p (y∣x)⋆ [ ]] E  R(f ∣x)p (x)⋆ [ ]

f  (x) =B arg min  R(f) =f∈YX E  [y]p (y∣x)⋆

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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If  is itself considered as a random variable, then  is also a random variable, along with its

predictions .

D f  D
⋆

 =ŷ f  (x)D
⋆

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Formally, the expected local expected risk yields to:

This decomposition is known as the bias-variance decomposition.

The noise term quantity is the irreducible part of the expected risk.

The bias term measures the discrepancy between the average model and the Bayes estimator.

The variance term quantities the variability of the predictions.

  

E  R(f  ∣x)D [ D
⋆ ]

= E  R(f  ∣x) + (f  (x) − f  (x))D [ B B D
⋆ 2]

= R(f  ∣x) + E  (f  (x) − f  (x))B D [ B D
⋆ 2]

=  +  +  

noise

 R(f  ∣x)B

bias2

 (f  (x) − E  f  (x) )B D [ D
⋆ ] 2

var

 E  (f  (x) − E  f  (x) )D [ D
⋆

D [ D
⋆ ] 2]

Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Bias-variance trade-o�

Reducing the capacity makes  �t the data less on average, which increases the bias term.

Increasing the capacity makes  vary a lot with the training data, which increases the

variance term.

f  D
⋆

f  D
⋆

Credits: Francois Fleuret, EE559 Deep Learning, EPFL.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.

43

https://github.com/glouppe/info8010-deep-learning


Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Credits: Gilles Louppe, INFO8010 - Deep Learning, ULiège.
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Lab session on multinomial logistic regression
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