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Today

How to exploit the structure of audio/speech signals to solve the audio source separation problem.

2



General objectives

The audio source separation problem today is a pretext to discuss general methodological
principles involved in many di�erent signal processing problems:

�. The observation model to relate the latent signal(s) of interest to the observations;

�. The latent signal model to make the resolution of the problem tractable;

�. The algorithm to estimate the model parameters and recover the latent signal(s).

It will also be an opportunity to reuse some concepts that we have seen during the last lesson

about signal representations. In particular how signal transformations can be useful to de�ne
models.
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Source separation

source separation

mixing 

operator

The goal is to separate a set of  source signals , ,

given a set of  mixture signals , .

The source separation problem is mainly characterized by

the type of mixing (instantaneous vs. convolutive);

the relative number of sources and microphones (under/over-determined problem).

J s  (t)j j ∈ {1, ..., J}
I x  (t)i i ∈ {1, ..., I}
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Observation model
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Linear instantaneous model

We aim to model the relationship between the latent signals of interest (the sources) and the
observations (the mixtures).

The simplest mixture model is linear and instantaneous:

or equivalently in matrix form:

x  (t) =i  a  s  (t),
j=1

∑
J

ij j

   =
⎣

⎡x  (t)1

⋮
x  (t)I

⎦

⎤
        .

⎣

⎡a  11

a  21

⋮
a  I1

a  12

a  22

⋮
a  I2

...

...

⋮
...

a  1J

a  2J

⋮
a  IJ

⎦

⎤

⎣

⎡s  (t)1

s  (t)2

⋮
s  (t)J

⎦

⎤
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Magnetoencephalography and electroencephalography
(M/EEG) are non-invasive techniques to record brain

activity.

They capture the magnetic and electric signals produced by

active neurons from the scalp surface.

Each M/EEG sensor captures a linear combination of the

di�erent brain activities.

The linear combination is considered instantaneous due to

the proximity between the brain and the sensors.

Credits: MNE Python

Credits: Hulton-Deutsch / Corbis Historical / Getty Images

7



An electrocardiogram (ECG) is a recording of the heart's electrical activity through repeated
cardiac cycles.

The fetal ECG provides important information about the health of the fetus. Its extraction
involves the elimination of the maternal ECG components and other interfering signals from

the ECG measurements obtained during pregnancy.

This can be formulated as a source separation problem, where the mixture is usually assumed

linear and instantaneous.

Credits: D. Sugumar et al., Joint blind source separation algorithms in the separation of non-invasive maternal and fetal ECG, IECS, 2014.
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Let us consider a source (baloon) and a microphone
in an open air environment without any obstacle.

We assume the source and the microphone are not
re�ecting sound.

The baloon explodes, it produces a source signal .

Anechoic model

In audio, the instantaneous mixing model rarely holds due to the propagation of the sound source
in the acoustic medium.

How is the source signal  related to the microphone signal ?

s(t)

s(t) x(t)
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The signal acquired by the microphone is given by

where

 is the source-to-microphone distance (in m);

 is the speed of sound (in m/s at 20°C);

 is the time of arrival (in s);

 is the sampling rate (in Hz).

At the microphone, the source signal is simply attenuated and delayed.
This is an anechoic recording.

x(t) =  s t − f  

 d4π

1
(

c

d
s)

d

c = 343

d/c

f  s
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In a real recording situation, the acoustic environment includes obstacles that a�ect the sound
propagation in many di�erent ways.

The interaction between the source signal and the acoustic environment is what leads to signal
at the microphone.

Image credits: Diego Di Carlo’s Ph.D. Thesis “Echo-aware signal processing for audio scene analysis”, 2020.
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It is called the room impulse response
because it is the response of the room

when the source is an impulse (dirac delta
function):

Convolutive model

This interaction is accurately represented by a convolution:

where  is called the room impulse response (RIR) and characterizes the acoustic path

between the source and microphone locations.

x(t) = [h ⋆ s](t) =  h(τ)s(t −
τ=0

∑
L  −1h

τ),

h(t)

x(t) = [h ⋆ δ](t) = h(t).
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The previous anechoic model corresponds to the case where the RIR only characterizes the direct
path between the source and the microphone:

time

m
ag

ni
tu
de

h(t) =  δ t −  f  , δ(t) =
 d4π

1
(

c

d
s)   .{

1
0

t = 0
t ≠ 0
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But in a real room, many re�ections of the sound source arrive at the microphone.

This is called reverberation.

time

m
ag

ni
tu
de
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Summary

To sum up, we have seen di�erent mixture models:

Linear instantaneous mixture model:  

Anechoic mixture model:  

Convolutive mixture model:  

The more "expressive" the mixture model, the more complex in terms of the number of
unknown mixing parameters.

We are not directly interested in the mixing parameters, but we will have to estimate them to
solve the source separation problem.

More unkowns means a more di�cult problem to solve. There is in general a trade-o� between
modeling accuracy and estimation tractability.

x  (t) =i  a  s  (t).
j=1
∑
J

ij j

x (t) =i  a  s  (t −
j=1
∑
J

ij j τ  ).ij

x  (t) =i  [a  ⋆
j=1
∑
J

ij s  ](t).j
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Latent source signal model
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Blind under-determined source separation

For simplicty, let us consider the linear instantaneous model:

Moreover, we consider an under-determined scenario where the number of microphones  is lower

than the number of sources , i.e. we have more unkowns than equations.

This is an ill-posed problem that admits an in�nite number of solution.

   =
⎣

⎡x  (t)1

⋮
x  (t)I

⎦

⎤
        .

⎣

⎡a  11

a  21

⋮
a  I1

a  12

a  22

⋮
a  I2

...

...

⋮
...

a  1J

a  2J

⋮
a  IJ

⎦

⎤

⎣

⎡s  (t)1

s  (t)2

⋮
s  (t)J

⎦

⎤

I

J
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Regularization with a signal model

We need to introduce additional information about the latent signals of interest to compensate
for the lack of observations.

This additional information will be provided through a source signal model, which can take
di�erent forms:

simplifying assumptions (e.g., the sources have disjoint time supports);

deterministic model (e.g.,  is the sum of a few sinusoids with exponentially decaying

amplitudes);

probabilistic model (e.g.,  is a locally stationary Gaussian process).

s  (t)j

s  (t)j

Signal models are usually expressed mathematically.
Using mathematical representations of signals allows us to derive algorithms to solve real-world problems (e.g., source separation).
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Signal modeling in a transformed domain

Sometimes, it is easier to de�ne a signal model in a transformed domain.

We are processing non stationary audio signals, so we consider a linear time-frequency
transform (see the previous lesson on signal representations), such as the MDCT or the STFT.

The observation model in the transformed domain is simply given by

where  denotes a signal coe�cient in the STFT or MDCT domain, at the time-frequency

point .

  =
⎣

⎡X  (f ,n)1

⋮
X  (f ,n)I

⎦

⎤
        ,

⎣

⎡a  11

a  21

⋮
a  I1

a  12

a  22

⋮
a  I2

...

...

⋮
...

a  1J

a  2J

⋮
a  IJ

⎦

⎤

⎣

⎡S  (f ,n)1

S  (f ,n)2

⋮
S  (f ,n)J

⎦

⎤

⋅(f ,n)
(f ,n) ∈ {0, ...,F − 1} × {0, ...,N − 1}
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Let us consider a mixture of  speech sources over  microphones, represented in the

waveform, MDCT or STFT domain by:

The �gure shows the mixture coe�cients in the di�erent domains, what do you observe and why?

J = 3 I = 2

 =[
x  (⋅)1

x  (⋅)2
]       =[

a  11

a  21

a  12

a  22

a  13

a  23
]
⎣

⎡s  (⋅)1

s  (⋅)2

s  (⋅)3
⎦

⎤
s  (⋅)  +1 [

a  11

a  21
] s  (⋅)  +2 [

a  12

a  22
] s  (⋅)  .3 [

a  13

a  23
]
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Source 1 Source 2 Source 3

We see that some structure emerges in the MDCT/STFT representation of the mixture signals.

This structure actually originates from the source signals, which tend to be sparse in the time-

frequency domain.

Sparsity is a central notion in signal processing, and we can de�ne signal models that encode

this characteristic of natural signals and images.
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The Degenerate Unmixing Estimation Technique (DUET)

We are now going see that sparsity is used in the DUET algorithm to solve the audio source
separation problem for anechoic stereophonic mixtures.

S. Rickard, "The DUET Blind Source Separation Algorithm", 2007.
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Unmixing or source separation

We want to estimate individual speech source signals from a stereophonic mixture.

We have 3 source signals so the problem is under-determined or degenerate.
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Anechoic stereo mixture model in the time domain

Each microphone signal is the sum of delayed and attenuated source signals:

where  is the distance between the -th source and the -th microphone

  

x  (t)i =   s  t −  f  ,
j=1

∑
J

 d  4π ij

1
j (

c

d  ij
s)

d  ij j i
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Without loss of generality, we absorb the attenuation and delay parameters at the �rst microphone
into the de�nition of the source signal, i.e., we de�ne the "new" source signal by:

such that the mixture model becomes

where

 is the relative attenuation factor of the -th source, also called the inter-

microphone level ratio;

 is the time di�erence of arrival (TDoA) of the -th source, also called the

inter-microphone time di�erence.

These parameters convey information about the spatial location of the source.

 (t) =s~j  s  t −  f  

 d  4π 1j

1
j (

c

d  1j
s)

   

x  (t)1 =   (t), x  (t)
j=1

∑
J

s~j 2 =  a   (t − δ  ),
j=1

∑
J

js
~
j j

a  =j d  /d  1j 2j j

δ  =j  f  

c

d  − d  2j 1j
s j
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In matrix form, we have:

where we removed the tilde to simplify the notations.

In the following, we will refer to  as the mixing parameters.

 =[
x  (t)1

x  (t)2
]        ,[

1
a  21

1
a  22

...

...
1
a  2J

]

⎣

⎡s  (t − δ  )1 1

s  (t − δ  )2 2

⋮
s  (t − δ  )J J

⎦

⎤

(a  , δ  )  { j j }
j=1
J
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Anechoic stereo mixture model in the STFT domain

Assuming that the TDoAs are small relative to the STFT analysis window length , we have:

The mixture model thus rewrites in STFT domain as follows:

L

s  (t −j δ  )  j ⟷
STFT

exp −2π  S  (f ,n).(
L

fδ  j ) j

 =[
X  (f ,n)1

X  (f ,n)2
]         .

⎣

⎡ 1

a  exp −2π  1 (
L

fδ  1 )

...

...

1

a  exp −2π  J (
L

fδ  J )⎦

⎤

⎣

⎡S  (f ,n)1

⋮
S  (f ,n)J

⎦

⎤
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It is possible to blindly separate an arbitrary number of sources from two anechoic mixtures

provided that

the time–frequency representations of the sources do not overlap (assumption 1),

the sources have di�erent spatial locations (assumption 2).

DUET principle
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W-disjoint orthogonality (assumption 1)

Source signals are sparse and have disjoint time-frequency supports. In other words, at most

one source is active at each time-frequency point .

The W-disjoint orthogonality hypothesis can be formalized by:

The mixture model simpli�es as follows:

where  indicates which source is active at time-frequency point .

It is the mathematical idealization of a milder assumption considering that every time–

frequency point in the mixture is dominated by the contribution of at most one source.

(f ,n)

S  (f ,n)S  (f ,n) =j k 0, ∀(f ,n), ∀j ≠ k.

 =[
X  (f ,n)1

X  (f ,n)2
]    S  (f ,n).

⎣

⎡ 1

a  exp −2π  I(f ,n) (
L

fδ  I(f ,n)
)⎦

⎤
I(f ,n)

I(f ,n) ∈ {1, 2, ..., J} (f ,n)
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Unmixing with binary masking

W-disjoint orthogonality is crucial to DUET because it allows for separating the mixture into its
component sources using binary masks:

where the mask is de�ned by:

The source separation problem now becomes that of estimating which source is active at each
time-frequency point.

This is where the second assumption of DUET comes into play.

 (f ,n) =Ŝj M  (f ,n)X  (f ,n),j 1

M  (f ,n) =j   .{
1
0

if I(f ,n) = j

otherwise
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DUET algorithm

Let us recall the mixture model under the W-disjoint orthogonality assumption:

The main observation that DUET leverages is that the ratio of the mixtures in the STFT domain does

not depend on the source signal but only on the mixing parameters associated with the active
source:

 =[
X  (f ,n)1

X  (f ,n)2
]    S  (f ,n).

⎣

⎡ 1

a  exp −2π  I(f ,n) (
L

fδ  I(f ,n)
)⎦

⎤
I(f ,n)

 =
X  (f ,n)1

X  (f ,n)2
a  exp −2π  , ∀(f ,n) ∈j (

L

fδ  j ) Ω  =j {(f ,n), I(f ,n) = j}.
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Let us de�ne the local attenuations and delays by:

Using the key observation in the previous slide, we have:

(f ,n) =â    ,
∣

∣

X  (f ,n)1

X  (f ,n)2

∣

∣

(f ,n) =δ̂ −  arg  , f >
2πf/L

1
(
X  (f ,n)1

X  (f ,n)2
) 0.

( (f ,n), (f ,n)) =â δ̂ (a  , δ  ), ∀(f ,n) ∈j j Ω  =j {(f ,n), I(f ,n) = j}.
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Spatial diversity (assumption 2)

We assume that the sources have di�erent spatial locations, that is

We recall that  and  encode the position of the -th source relative to the microphones.

(a  ≠j a  ) or (δ  ≠k j δ  ), ∀j ≠k k.

a  j δ  j j
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2D histogram of local attenuations and delays

The local attenuations and delays that are computed from the mixture signals can thus only take
values among the actual mixing parameters that are assumed to be all di�erent:

What should we obtain if we build a 2D histogram of the local attenuations and delays

?

( (f ,n), (f ,n)) ∈â δ̂ {(a  , δ  )}  , ∀(f ,n).j j j=1
J

( (f ,n), (f ,n))â δ̂
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The observations do not perfectly match with the model, but we can still identify three clusters.
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From the 2D histogram, we can estimate the mixing parameters  by peak picking.

We recall that in principle, for all time-frequency points ,

We can thus build the time-frequency masks for source separation as follows:

In practice, because not all the assumptions are strictly satis�ed, the local attenuations and
delays will not be precisely equal to the estimated mixing parameters, but they will cluster
around them. We will need a metric to measure the proximity.

{(  ,  )}  âj δ̂j j=1
J

(f ,n)

( (f ,n), (f ,n)) ∈â δ̂ {(  ,  )}  .âj δ̂j j=1
J

M  (f ,n) =j   .{
1
0

if ( (f ,n), (f ,n)) = (  ,  )â δ̂ âj δ̂j

otherwise
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Summary of DUET

�. Construct the STFT representations  and  of both mixtures.

�. Take the ratio of the two mixtures and extract local attenuations and delays

�. Compute a 2D histogram and estimate the mixing parameters  by peak picking.

�. Build the binary masks

�. Estimate the sources by .

�. Compute the inverse STFT to get the time-domain source signals.

X  (f ,n)1 X  (f ,n)2

( (f ,n), (f ,n))  .{ â δ̂ }
(f ,n)

(  ,  )  { âj δ̂j }
j=1

J

M  (f ,n) =j   .{
1
0

if ( (f ,n), (f ,n)) ≈ (  ,  )â δ̂ âj δ̂j

otherwise

 (f ,n) =Ŝj M  (f ,n)X  (f ,n)j 1
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Mask 1 Mask 2 Mask 3
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