Speech production and modeling

Simon Leglaive

CentraleSupélec

1

Today

- Speech production mechanisms
- Characteristics of speech signals

Speech production

Speech signal

Can you guess to what "speech sound" each bloc corresponds?

Phonemes

Elementary speech sounds are called phonemes.

- 44 phonemes in English.
- 10-15 phonemes per second in normal English speech.
- We are going to see what are the key differences in the production of the different phonemes.

		monopl	nthongs	1	diphthongs		Phonemic	
VOWELS	i:	I	ប	u:	IƏ	еі	Chart voiced	
	sh <u>ee</u> p	sh <u>i</u> p	<u>goo</u> d	sh <u>oo</u> t	h <u>ere</u>	w <u>ai</u> t		unvoiced
	е	ə	3:	ວ:	បə	JI	បទ	
	b <u>e</u> d	teach <u>er</u>	b <u>ir</u> d	d <u>oor</u>	t <u>ou</u> rist	b <u>oy</u>	sh <u>ow</u>	
	æ	Λ	a:	a	eə	аі	aʊ	
	c <u>a</u> t	<u>u</u> p	f <u>ar</u>	<u>o</u> n	h <u>air</u>	my	C <u>OW</u>	
CONSONANTS	р	b	t	d	ťſ	dӡ	k	g
	pea	<u>b</u> oat	<u>t</u> ea	<u>d</u> og	<u>ch</u> eese	<u>J</u> une	<u>c</u> ar	go
	f	V	θ	ð	S	Z	ſ	3
	<u>f</u> ly	<u>v</u> ideo	<u>th</u> ink	<u>th</u> is	<u>s</u> ee	<u>z</u> 00	<u>sh</u> all	televi <u>s</u> ion
	m	n	ŋ	h	I	r	W	j
	<u>m</u> an	<u>n</u> ow	si <u>ng</u>	<u>h</u> at	love	<u>r</u> ed	<u>w</u> et	yes

The 44 phonemes of Received Pronunciation based on the popular Adrian Underhill layout

adapted by EnglishClub.com

Speech production – the global view

- The energy comes from air expelled from the lungs.
- At the larynx, this airflow passes between the vocal folds.
- Then it goes through the vocal tract, which is made of three cavities:
 - 1. the pharynx
 - 2. the oral cavity
 - 3. the nasal cavity
- Finally, sound goes out of the mouth and nose openings.

Articulators

We consider as articulator any mobile part of the vocal tract on which we can act voluntarily and which is used in the production of speech sounds.

Real-time MRI scan of a person talking.

What are the three main speech articulators?

Tongue

- Very mobile and flexible
- Very important for phonation

Jaw

- Little degrees of freedoms and rigid
- Less important for phonation

Lips

- Very mobile and flexible
- Important movements for phonation:
 - occlusion
 - \circ protrusion
 - raising and lowering
 - stretching, raising and lowering of lip corners

Speech sound sources

We distinguish 3 types of sound sources, which can be combined or occur individually:

• Quasi-periodic source resulting from the vibration of the vocal folds.

We say that the sound is voiced.

It can be arbitrarily long (in the limits of an exhalation).

• Fricative noise source produced by a turbulent airflow with a constriction in the vocal tract.

It can also be arbitrarily long.

• Plosive noise source produced by quick occlusions of the vocal tract and generating an acoustic impulse.

Here the duration is short.

Voice production

Vocal folds and pitch

- The vibration of the vocal folds defines the pitch of the speech signal (i.e. its fundamental frequency).
- Variations of pitch along time define the melody of the voice.

	Average pitch (Hz)	Pitch range (Hz)
Male	100 - 130	90 - 270
Female	150 - 300	120 - 360
Child	350 - 400	200 - 600

Pitch and mechanisms

Vocal tract and formants

- The three elementary sound sources are modified by the vocal tract, before propagating out of the phonatory system, through the mouth and nose openings.
- The vocal tract actually corresponds to an acoustic filtering of the source signal.
- The cavities in the vocal tract give rise to resonances, that are called the formants.
- By modifying the shape of the vocal tract, we change the acoustic filter and the associated resonances.
- We can change the formants independently of the pitch, or in signal processing terms, we can change the filter independently of the source

Resonances and formants

Distinctive articulatory features of vowels

- Opening of the mouth
 - Opened vowel [a] in "hat"
 - Closed vowel [i] in "meet"
- "Frontness" of the tongue
 - Front vowel [i] in "meet"
 - Back vowel [u] in "boot"
- Rounding of the lips
 - Rounded vowel [ɔ] in "not"
 - Not rounded vowel [i] in "meet"
- Nasalization: sound comes out of the mouth only, or out of the mouth and nose.

Vowels and formants

We can distinguish between vowels using the position of the first formants

- high/low F1 \leftrightarrow opened/closed
- high/low F2 \leftrightarrow front/back
- high/low F3 ↔ not rounded/rounded lips

By moving articulators, the shape of the vocal tract varies, formants move in frequency, and vowels change.

Vowels clustering in the formants space

FORMANT FREQUENCIES FOR THE VOWELS								
Typewritten Symbol for Vowel	IPA Symbol	Typical Word	Fi	F2	F3			
IY I E AE UH A OW U OO ER	i I£ ¢ C U U S	(beet) (bit) (bet) (bat) (but) (bot) (bought) (foot) (boot) (bird)	270 390 530 660 520 730 570 440 300 490	2290 1990 1840 1720 1900 1090 840 1020 870 1350	3010 2550 2480 2410 2390 2440 2410 2240 2240 1690			

Table 3.2 Average Formant Frequencies for the Vowels. (After Peterson and Barney [11].)

male speakers

Fig. 3.4 Plot of second formant frequency versus first formant frequency for vowels by a wide range of speakers. (After Peterson and Barney [11].)

Image credit: L.R. Rabiner and R.W. Shafer, "Digital Processing of Speech Signals", Prentice-Hall, 1978

male and children speakers

Consonants

Fricatives

- fricative noise source
- voiced [v, z, j] or unvoiced [?, ?, ?]
- locally stationary

Plosives

- plosive noise source
- voiced [?, ?, ?] or unvoiced [p, t, k]
- highly non-stationary

Nasal

• voiced

- sound comes mostly from the nose
- examples: [m, n]

Liquids

- voiced
- the vocal tract changes rapidly, especially using the tongue
- examples: [l, r]

Consonants

Fricatives

- fricative noise source
- voiced [v, z, j] or unvoiced [f, s, ch]
- locally stationary

Plosives

- plosive noise source
- voiced [b, d, g] or unvoiced [p, t, k]
- highly non-stationary

Nasal

• voiced

- sound comes mostly from the nose
- examples: [m, n]

Liquids

- voiced
- the vocal tract changes rapidly, especially using the tongue
- examples: [l, r]

Go to https://app.wooclap.com/CXIOJL

Prosody

- Prosody is on top of the flow of phonemes.
- Prosodic variables:
 - pitch (fundamental frequency)
 - speech rate (number of speech units, e.g. phonemes, per second)
 - loudness (intensity)
 - timbre (spectral characteristics such as amplitude of harmonics)
- Different combinations of these variables are exploited for intonation and accentuation.
- Prosody may reflect various features of the speaker or the utterance:
 - $\circ~$ the identity of the speaker
 - $\circ\;$ the emotional state of the speaker
 - \circ the form of the utterance (statement, question, or command)

Spectrum/spectrogram reading

The spectral envelope

- Black curve: power spectrum (in dB) of the recording of a vowel, computed with the DFT.
- Blue curve: spectral envelope showing the formant resonances, computed with linear predictive coding (will be discussed in the lab session).

The spectral envelope

- Black curve: power spectrum (in dB) of the recording of a vowel, computed with the DFT.
- Blue curve: spectral envelope showing the formant resonances, computed with linear predictive coding (will be discussed in the lab session).

Male or female speaker?

Go to https://app.wooclap.com/CXIOJL and find the vowel that corresponds to each spectrum, using the above French vocal triangle.

Spectrogram reading - "aeiou"

We could have done the same from a spectrogram representation.

Spectrogram reading - "assa - azza"

26

Spectrogram reading - "atta - adda"

With a bit of practice you could be able to decode this mystery spectrogram.

1 bonus point if you decode the message 😉.

Further reading

Introduction to voice acoustics by Joe Wolfe, Emeritus Professor at the University of New South Wales (Syndney, Australia):

https://newt.phys.unsw.edu.au/jw/voice.html

Lab session

Analysis, transformation and synthesis of speech signals with the **source-filter model** and **linear predictive coding**

Solution to the wooclap

