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Today

The key concepts you should be familiar with at the end of this course are the following:

Modeling, or how to define a model that relates the observed data and the latent variables of

interest;

Inference, or how to infer the latent variables from the observations;

Learning, or how to estimate the unkown model parameters from the observed data.

These concepts will be exemplified using the Gaussian mixture model, which will be the focus of
the next practical session.
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The deluge of data calls for automated methods of data analysis, which is what machine
learning provides.

Machine learning can be defined as a set of methods that can automatically detect patterns in

data, and then use the uncovered patterns to perform predictions and/or make decisions
(Murphy, 2012).

Let's start with an introductory example!

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
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The adventures of Thomas Bayes, episode 1

The following example and drawings are adapted from a tutorial on Bayesian
Learning for Signal Processing given by Antoine Deleforge at the LVA/ICA

2015 Summer School.

4

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf
https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Somemone is
making a joke…

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Data / observations The dataset  consists of  observations

, .

Here,  and  corresponds to the

coordinates of the -th stone on the ground.

The observations are assumed to be

1. independent and identically distributed
(i.i.d);

2. generated from an unknown probability

distribution .

We write 

D N

x ​  ∈  Ri
D i = 1, ...,N

D = 2 x ​i

i

p (x)⋆

D = x ​  ∈  R p (x) ​ .{ i
D ∼

i.i.d ⋆ }
i=1

N
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Problem

The problem is to infer a latent variable of interest from the observed data.

Bayes is interested in inferring the index of the guilty house, from which the stones were thrown.

This is the latent variable of interest, the unkown that we would like to estimate. It is not directly
observable, but it is some how linked to the observations.

To solve the problem we need to formalize it.

To formalize the problem, we need to introduce a discrete variable  that represents

the latent variable and to relate it to the observed data  with a model. This

model defines the link between what is observed and what is unknown.

z ∈ {1, 2, 3}
D = {x ​ ∈i R } ​

2
i=1
N
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 is a set of parameters

assumed to be known and fixed;

 is the joint distribution of all

the observations and it is called the (conditional)

likelihood.

 denotes the probability density function (pdf) of the

multivariate Gaussian distribution, where  is the continuous random

vector,  the mean vector, and  the covariance matrix.

Observation (or likelihood) model

The observation model explains how the observations are generated from the latent variable.

Conditionally on , the observations are assumed to be i.i.d according to a Gaussian distribution:z

p(D ∣ z = k) = p(x ​, ...,x ​ ∣1 i z = k) = ​p(x ​ ∣
i=1

∏
N

i z = k) = ​ N x ​;μ ​,σ I .
i=1

∏
N

( i k
2 )

{μ ​,μ ​,μ ​,σ }1 2 3
2

p(D ∣ z = k)

N (x;μ,Σ)

x

μ Σ
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 (student house);

 (grandma Jane);

 (family with kids).

I can't believe it, Grandma 
Jane is so lovely and kind.

Prior model

The prior model encodes prior information / belief / knowledge about the latent variable of interest.

Bayes knows that students, grandma Jane and a family with kids live in the first, second and third

house, respectively. So he considers the following prior:

What prior could Bayes choose if he did not know the occupants of the different houses?

π ​ :=1 p(z = 1) = 0.3

π ​ :=2 p(z = 2) = 0.1

π ​ :=3 p(z = 3) = 0.6

For the discrete random variable ,  denotes the probability that it is equal to .

 reads "A is defined to be B".

z p(z = k) k

A := B
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Inference

In the most general case, inference consists in computing or approximating the posterior

distribution of the latent variable of interest.

This is achieved by using Bayes' theorem.
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​ ​ ​

p(z = k ∣ D) = ​

p(D)
p(D ∣ z = k)p(z = k)

= ​

​p(D, z = k)
k=1
∑

3

p(D ∣ z = k)p(z = k)

= ​

​p(D ∣ z = k)p(z = k)
k=1
∑

3

p(D ∣ z = k)p(z = k)

= ​

​p(z = k) ​p(x ​ ∣ z = k)
k=1
∑

3

i=1
∏
N

i

p(z = k) ​p(x ​ ∣ z = k)
i=1
∏
N

i

= ​

​π ​ ​ N x ​;μ ​,σ I
k=1
∑

3

k
i=1
∏
N

( i k
2 )

π ​ ​ N x ​;μ ​,σ Ik
i=1
∏
N

( i k
2 )

(using Bayes theorem)

(using the sum rule)

(using the product rule)

(using the i.i.d assumption)

(using the prior and observation model)

18



The posterior combines the information from the prior and from the observations. It updates the

prior using the observations, through the Bayes' theorem.

We have access to all the quantities necessary to compute the posterior distribution.

p(z = k ∣ D) = ​

​π ​ ​ N x ​;μ ​,σ I
k=1
∑

3

k
i=1
∏
N

( i k
2 )

π ​ ​ N x ​;μ ​,σ Ik
i=1
∏
N

( i k
2 )
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Point estimate

We are often interested in computing a point estimate of the latent variable of interest from its

posterior distribution.

The posterior contains all the information about the latent variable we care about, but it does
not directly tell Bayes which house is the guilty one.

From the posterior , , Bayes needs to make a decision about the

guilty house.

This is achieved by computing a point estimate , and the posterior probability

 indicates how confident (or equivalently uncertain) Bayes is about this decision.

p(z = k ∣ D) k ∈ {1, 2, 3}

∈  {1, 2, 3}ẑ

p(z = ∣ẑ D)

In estimation theory and decision theory, the point estimate is called the Bayes estimator. It is defined as the minimizer of a posterior expected

loss (the expectation of a loss function taken with respect to the posterior distribution). Various loss functions can be defined, leading to
different estimates.
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These pranksters will hear 
from me at the Uni!

A natural choice here is to take the maximum a posteriori (MAP) estimate:

The students are (estimated) guilty!

​ =ẑMAP ​p(z =
k∈{1,2,3}
arg max k ∣ D) = 1.
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Prediction / generation of new data

We can also predict new data given the already observed ones using the predictive posterior.

The predictive posterior is an average of the observation model weighted by the posterior

probabilities of .

​ ​ ​

p(x ​ ∣ D)new = ​p(x ​, z = k ∣ D)
k=1

∑
3

new

= ​p(x ​ ∣ z = k, D)p(z = k ∣ D)
k=1

∑
3

new

= ​p(x ​ ∣ z = k)p(z = k ∣ D)
k=1

∑
3

new

= ​ N (x ​;μ ​,σ I)p(z = k ∣ D)
k=1

∑
3

new k
2

= E ​ N (x ​;μ ​,σ I)p(z=k∣D) [ new k
2 ]

(using the sum rule)

(using the poduct rule)

(using the independence assumption)

(using the Gaussian observation model)

(using the definition of the expectation)
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The next day, Bayes goes to the university armed with his predictive posterior:

23



Predictive prior

1st house: students; 2nd house: grandma; 3rd house: kids

Predictive posterior

We can also compute the predictive prior, which tells us what we would predict given no
observations. This is useful to check if the prior distribution does capture our prior beliefs.

E ​ N (x;μ ​,σ I)p(z=k) [ k
2 ] E ​ N (x;μ ​,σ I)p(z=k∣D) [ k

2 ]
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Wrap-up
Modeling, inference, and learning
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Starting point

We started from the general problem of inferring some latent information from observations in a
dataset

D = x ​ p (x) ​ .{ i ∼i.i.d ⋆ }
i=1

N
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Modeling

We formalized the problem by defining a model that links the observed and the latent variables.

Following a generative approach, this was achieved by defining their joint distribution:

where  and

 is the (conditional) likelihood that defines how observations are generated from the

latent variable. It depends on deterministic parameters  (mean vectors and variance in Bayes' adventures);

 is the prior that encodes the prior belief and uncertainty about the latent variable of

interest. It depends on deterministic parameters  (the prior probabilities in Bayes' adventures);

By defining the prior and the likelihood models we are making assumptions about the generative

process of the observed data.

p(x, z; θ) = p(x ∣ z; θ ​) p(z; θ ​),x z

θ = θ ​ ∪x θ ​z

p(x ∣ z; θ ​)x
θ ​x

p(z; θ ​)z
θ ​z

As all observations are assumed to be i.i.d, we drop the index  of .

For a discrete (resp. continuous) random variable ,  denotes its probability mass function (resp. probability density function).

n x ​i

z p(z; θ ​)z 27
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By marginalizing the unobserved latent variable in the joint distribution  we obtain the

marginal likelihood:

The marginal likelihood  is a model of the distribution  that is assumed to have

generated the observations in the dataset.

p(x, z; θ)

p(x; θ) = ​ ​

⎩

⎨

⎧
​ p(x ∣ z; θ ​) p(z; θ ​)dz if z ∈ Z  is continuous;∫

Z
x z

​p(x ∣ z = k; θ ​) p(z = k; θ ​) if z ∈ Z  is discrete.
k∈Z

∑ x z

p(x; θ) p (x)⋆
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Inference

Inference consists in computing the posterior distribution of the latent variable, which summarizes

our knowledge on  once we have observed .

Using Bayes' theorem, the posterior distribution writes:

The process of inference will often require us to use the posterior to answer various questions.

z x

p(z ∣ x; θ) = ​ .
p(x; θ)

p(x ∣ z; θ ​)p(z; θ ​)x z
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Point estimate

 encodes all our knowledge about  after observing the data, but it does not directly

provide an "estimate" of the . From the posterior, we need to choose a single value  to serve

as a point estimate of . In Bayesian statistics, this is a decision, and in different contexts we

might want to select different point estimates.

To take the decision, we need to introduce a loss function  which tells us "how bad"

would  be if the "true value" of the latent variable was . The decision is then taken by

minimizing the posterior expected loss:

For example, if we consider a continuous latent variable and the squared error loss

, we obtain the posterior mean estimate:

p(z ∣ x; θ) z

z ẑ

z

l( , z)ẑ

ẑ z

L( ) =ẑ E ​[l( , z)].p(z∣x;θ) ẑ

ℓ( , z) = ( − z)ẑ ẑ 2

​ =ẑMSE ​ E ​[( −
ẑ

arg min p(z∣x;θ) ẑ z) ] =2 E ​[z].p(z∣x;θ)
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 is the 95% credible interval for the

continuous latent variable  if

Uncertainty

Importantly, the posterior distribution encodes uncertainty about the latent variable of interest.
Indeed, we inferred a full probability distribution and did not simply compute a point estimate.

Quantifying uncertaining when making predictions is important for critical applications such as
in medicine, autonomous driving, etc.

Uncertainty can be quantified using a credible interval, which is just an interval within which
the latent variable value falls with a particular probability.

[a, b]
z

​ p(z ∣∫
a

b

x; θ)dz = 0.95.

Image credits: bayestestR
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Prediction / generation of new data

Predictive prior

"Averaging" the likelihood over the prior:

Predictive posterior

"Averaging" the likelihood over the posterior:

​ ​

p(x ​; θ)new = E ​[p(x ​ ∣ z; θ ​)].p(z;θ ​)z new x

​ ​

p(x ​ ∣ x; θ)new = E ​[p(x ∣ z; θ ​)].p(z∣x;θ) new x
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Wait, what about learning, as in machine learning?
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Learning

In the adventures of Thomas Bayes, we ended-up with the following decision rule:

This is a function of:

the input data in ;

the model parameters , which were assumed to be known and fixed.

Learning is the process to automatically estimate the model parameters from the data.

=ẑ ​p(z =
k∈{1,2,3}
arg max k ∣ D; θ) = ​ ​

k∈{1,2,3}
arg max

​π ​ ​ N x ​;μ ​,σ I
k=1
∑

3

k
i=1
∏
N

( i k
2 )

π ​ ​ N x ​;μ ​,σ Ik
i=1
∏
N

( i k
2 )

D = x ​ p (x) ​{ i ∼
i.i.d ⋆ }

i=1

N

θ = σ , μ ​,π ​{ 2 { k k}k=1
3 }
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The three main ingredients to formalize learning

in probabilistic machine learing are

A model distribution , which may or

may not involve latent variables;

A dataset ;

A measure of fit between  and ,

seen as a function of .

Many models in machine learning can be studied from a probabilistic perspective, where learning

consists in estimating the parameters  that make the model distribution  as close as

possible to the true data distribution , given a dataset of i.i.d observations and a measure of

fit.

θ p(x; θ)
p (x)⋆

p(x; θ)

D = x ​ p (x) ​{ i ∼i.i.d ⋆ }
i=1

N

p(x; θ) p (x)⋆

θ
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KL divergence and maximum likelihood

A popular choice is to take the Kullback-Leibler (KL) divergence as a measure of fit:

with equality if and only if  and .

Then learning consists in solving the following optimization problem:

The difficulty is that we do not know the true data distribution , which prevents us from

computing the expectation analytically.

D ​(p ∥KL q) = E ​[ln(p) −p ln(q)] ≥ 0,

p = q D ​(p ∥KL q) ≠ D ​(q ∥KL p)

​ ​

​ {D (p (x) ∥ p(x; θ)) = E ​[ln p (x) − ln p(x; θ)]} ⇔ ​ E ​[ln p(x; θ)].
θ

min KL
⋆

p (x)⋆
⋆

θ
max p (x)⋆

p (x)⋆
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We use the Monte Carlo method, which approximates the intractable expectation by an

empirical average using i.i.d samples drawn from :

This last expression shows that choosing the Kullback-Leibler divergence as the measure of fit
leads to maximum (log-marginal) likelihood parameters estimation.

We are trying to find the model parameters that are the most likely on average over the dataset,

where "being likely" means that the corresponding log-density  is high whhen

evaluated on the samples of the dataset.

p (x)⋆

E ​[ln p(x; θ)] ≈p (x)⋆
​ ​ ln p(x ​; θ).

N

1

i=1

∑
N

i

ln p(x; θ)

The Monte Carlo estimator is unbiased and converges almost surely towards the exact expectation as the number of samples tends to infinity.
37



Which distribution better fits the data?

dataset
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Data: Get the dataset .

Modeling: Define a model that relates the latent variable of interest to the observations

.

Inference: Compute the posterior distribution , which can then be used in many

different ways.

Learning: Estimate the unknown model parameters  by maximizing the log-marginal likelihood

 averaged over the dataset.

Summary

D = x ​ p (x) ​{ i ∼
i.i.d ⋆ }

i=1

N

p(x, z; θ) = p(x ∣ z; θ ​)p(z; θ ​)x z

p(z ∣ x; θ)

θ

ln p(x; θ)
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Taking a step back and looking at the landscape of

machine learning
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What we have seen so far actually corresponds to a subset of machine learning methods, involving

generative modeling, because we define a generative model of the observed data;

Bayesian modeling and inference, because the generative model involves a latent random
variable equiped with a prior and during inference we compute its posterior distribution;

unsupervised learning, because the parameters of the model, which in fine allow us to infer the
latent variable of interest from the observations through the posterior, are learned from

unlabeled data.

Supervised learning is another important subset of machine learning methods, which involves
generative or discriminative models. This will be the topic of another lecture.
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Supervised learning with discriminative models is probably the dominating paradigm in
machine learning, which has led to great research and industrial successes in recent years.

But understanding first unsupervised learning with generative models greatly helps to have a
deep understanding of supervised learning with discriminative models.

This is for three reasons:

1. The whole story of extracting a latent variable of interest from observations is always valid
at test time, whatever the machine learning method.

2. Supervised learning is simply the case where, at training time, the variable of interest is not
latent anymore but observed and used for the learning of the model parameters (no need to
marginalize it anymore!);

3. Discriminative modeling is simply the case where we directly define the posterior

distribution in the modeling step, instead of defining the joint distribution and then using
Bayes theorem.
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Supervised Learning Unsupervised Learning
Labeled training data Unlabeled training data

2. Continuous case:
► Regression

Ex. application: head pose

1. Discrete case: («one-hot»)
► Classification

Ex. application: dog breed

3. Sparse case:
► Multi-classification

Ex. application: image
labelling

… …

Input
Labels/Targets

…

Input

1

0.6

0.1

0.3

13: Ger man Shepher d

man
pal m t r ee

phone

2. Continuous case: ( )

► Dimensionality
Reduction

1. Discrete case:

► Clustering

3. Sparse case:

► Dictionary Learning

Learned 
model

Unlabeled test data or

Credits: Antoine Deleforge, Inria, course given at Télécom Physique Strasbourg.
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Applications of unsupervised learning

User
Recommendation

Segmentation

Data
Visualization

Data
Generation

Denoising
Data

Completion
…

« If AI was a cake, reinforcement learning would be
the cherry on the cake, supervised learning the
icing, and unsupervised learning the génoise. »

-Yann Lecun (Facebook AI) at NIPS 2016

Self-
supervision

Feature
Learning

Compression

Potential to learn from massive amount of unlabeled data to generate even more.

Credits: Antoine Deleforge, Inria, course given at Télécom Physique Strasbourg.
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Fundamental techniques in unsupervised learning

Clustering Dim. Reduction Dict. Learning
Discrete Continuous Sparse

Techniques • K-means
• GMM EM

• PCA
• Manifold Learning

• Sparse Coding
• K-SVD

These fundamental techniques can all be described from a probabilistic perspective, where

the structure of the latent variable of interest  is encoded in a suitable probabilistic prior

(modeling);

the task of extracting  from the observations corresponds to the computation of its posterior

(inference);

the model parameters are estimated by maximizing the marginal likelihood

(learning).

z

z

Image credits: Antoine Deleforge, Inria, course given at Télécom Physique Strasbourg.
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Machine learning for signal processing

When the observations or the latent variables correspond to natural signals or images, we are
actually doing signal processing using machine learning.
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The previous fundamental techniques form the basis of many advanced deep learning techniques
used today:

Variational autoencoders (VAEs);

Generative adversarial networks (GANs);

Normalizing flow;

Diffusion models;

Conditional neural processes;

Self-supervised learning;

etc.
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In the adventures of Thomas Bayes, episode 1, we discovered the modeling and inference steps,

but not the learning step (the model parameters were assumed to be known and fixed).
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The adventures of Thomas Bayes, episode 2

The following example and drawings are adapted from a tutorial on Bayesian
Learning for Signal Processing given by Antoine Deleforge at the LVA/ICA

2015 Summer School.
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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They are on
the roof!

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Modeling
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Observed variables: .

Generative model

...

...

Hidden variables: .

1. 2. 3.

{x ​ ∈i R } ​

2
i=1
N

p({x ​, z ​} ​; θ) =i i i=1
N

​p(x ​, z ​; θ) =
i=1

∏
N

i i ​p(x ​ ∣
i=1

∏
N

i z ​; θ)p(z ​; θ).i i

{z ​ ∈i {1, 2, 3}} ​i=1
N
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...

...
1. 2. 3.

Prior

Likelihood

Parameters

p(z ​ =i k; θ) = π ​, ​π ​ =k
k=1
∑
K

k 1, K = 3

p(x ​ ∣i z ​ =i k; θ) = N x ​;μ ​,Σ ​( i k k)

θ = {π ​,μ ​,Σ ​} ​.k k k k=1
K
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Marginal likelihood

Observations are independent and identically distributed according to a Gaussian mixture model

(GMM) with  components.

The parameters  are called the mixing coefficients, they give the prior probability of picking the

k-th component to generate a data point .

​ ​

p({x ​} ​; θ)i i=1
N = ​p(x ​; θ)

i=1

∏
N

i

= ​ ​p(x ​ ∣ z ​ = k; θ)p(z ​ = k; θ)
i=1

∏
N

k=1

∑
K

i i i

= ​ ​π ​N x ​;μ ​,Σ ​ .
i=1

∏
N

k=1

∑
K

k ( i k k)

K = 3

π ​k

x ​i
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Inference
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where

1. 2. 3.

? ?

Posterior distribution

The posterior probabilities  are also known as the responsabilities.

The argmax of the responsability assigns the observation to a component, i.e. it clusters the data.

p {z ​} ​ ∣ {x ​} ​; θ =( i i=1
N

i i=1
N ) ​p(z ​ ∣

i=1
∏
N

i x ​; θ),i

​ ​

p(z ​ = k ∣ x ​; θ)i i = ​

p(x ​; θ)i

p(x ​ ∣ z ​ = k; θ)p(z ​ = k; θ)i i i

= ​

​ p(x ​ ∣ z ​ = j; θ)p(z ​ = j; θ)∑j=1
K

i i i

p(x ​ ∣ z ​ = k; θ)p(z ​ = k; θ)i i i

= ​ .
​ π ​p(x ​ ∣ z ​ = j; θ)∑j=1

K
j i i

π ​p(x ​ ∣ z ​ = k; θ)k i i

p(z ​ =i k ∣ x ; θ)i
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Parameters estimation

The posterior distribution can be computed analytically, but it depends on the unknown model

parameters .

Ideally, we would like to estimate them by maximizing the log-marginal likelihood:

Due to the presence of the sum over  inside the logarithm, the maximum marginal likelihood

solution for the parameters does not have a closed-form analytical solution.

θ = {π ​,μ ​,Σ } ​k k k k=1
K

​ ​

L(θ) = ln p({x ​} ​; θ)i i=1
N

= ln ​ ​π ​N x ​;μ ​,Σ ​

i=1

∏
N

k=1

∑
K

k ( i k k)

= ​ ln ​π ​N x ​;μ ​,Σ ​ .
i=1

∑
N

(
k=1

∑
K

k ( i k k))

k
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Let's derive an EM 
algorithm

1. 2. 3.
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The expectation-maximization algorithm

61



The expectation-maximization (EM) algorithm is a general technique introduced by Dempster et al.
in 1977 for maximum likelihood parameters estimation in probabilistic models having latent

variables.

Let  and  denote the observed and latent random variables, respectively, which are
assumed to be continuous, although the discussion is identical in the discrete setting.

We assume that direct optimization of the marginal likelihood  is difficult, while optimization

of the complete-data likelihood function  is much simpler.

x ∈ X z ∈ Z

p(x; θ)
p(x, z; θ)
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The evidence lower bound

We first introduce a distribution over the latent variables whose probability density function is

denoted by .

For any distribution , the following decomposition of the log-marginal likelihood holds:

where  is called the evidence lower bound (ELBO), and it is defined by

The Kullback-Leibler (KL) divergence is defined by:

and it satisfies  with equality if and only if .

Proof: 

q(z)

q(z)

ln p(x; θ) = L(q(z), θ) + D ​(q(z) ∥KL p(z ∣ x; θ)),

L(q(z), θ)

L(q(z), θ) = E ​[ln p(x, z; θ) −q(z) ln q(z)].

D ​(q ∥KL p) = E ​[ln(q) −q ln(p)],

D ​(q ∥KL p) ≥ 0 q = p

ln p(x; θ) = E ​[ln p(x; θ)] =q(z) E ​[ln p(x, z; θ) −q(z) ln p(z ∣ x; θ) − ln q(z) + ln q(z)]
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As the KL divergence is always non-negative, we have:

with equality if and only if .

The ELBO is indeed a lower bound of the log-marginal likelihood, which is tight if  matches the

true posterior.

ln p(x; θ) = L(q(z), θ) + D (q(z) ∥KL p(z ∣ x; θ))

ln p(x; θ) ≥ L(q(z), θ),

q(z) = p(z ∣ x; θ)

q(z)

Image credit: Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

64

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


EM algorithm

The EM algorithm is an iterative algorithm which alternates between optimizing the ELBO with

respect to  in the E-Step and with repspect to  in the M-step.

We first initialize , then we iterate for 

E-Step: 

M-Step: 

q θ

θ ​0 t ≥ 0

q ​(z) =t+1 ​ L(q(z), θ ​)
q

arg max t

θ ​ =t+1 ​ L(q ​(z), θ)
θ

arg max t+1
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E-Step

We recall the decomposition of the log-marginal likelihood:

The solution of the E-step is given by:

ln p(x; θ) = L(q(z), θ) + D ​(q(z) ∥KL p(z ∣ x; θ)).

​ ​

q ​(z)t+1 = ​ L(q(z), θ ​)
q

arg max t

= ​D ​(q(z) ∥ p(z ∣ x; θ ​))
q

arg min KL t

= p(z ∣ x; θ ​).t
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After the E-Step, we have , and the ELBO is equal to the log-

marginal likelihood (i.e. the lower-bound is tight):

Therefore, maximizing the lower-bound with respect to the model parameters in the M-step will

necessarily increase the log-marginal likelihood.

D ​(q (z) ∥KL t+1 p(z ∣ x; θ ​)) =t 0

ln p(x; θ ​) =t L(q ​(z), θ ​).t+1 t

Image credit: Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

67

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


M-Step

We recall the expression of the ELBO:

The solution of the M-step is given by:

where the constant is the differential entropy of  which is independent of .

L(q(z), θ) = E ​[ln p(x, z; θ) −q(z) ln q(z)],

​ ​

θ ​t+1 = ​ L(q ​(z), θ)
θ

arg max t+1

= ​ L(p(z ∣ x; θ ​), θ)
θ

arg max t

= ​ E ​[ln p(x, z; θ) − ln p(z ∣ x; θ ​)]
θ

arg max p(z∣x;θ ​)t t

= ​ E ​[ln p(x, z; θ)] + cst(θ),
θ

arg max p(z∣x;θ ​)t

p(z ∣ x; θ ​)t θ
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After the M-step, because  has been held fixed for computing the new model

parameters , the KL divergence  will be non zero.

The increase in the log-marginal likelihood function is therefore greater than the increase in the

ELBO, as shown below.

We recall the decomposition of the log-marginal likelihood ln p(x; θ) = L(q(z), θ) + D ​(q(z) ∥KL p(z ∣ x; θ)).

q ​(z) =t+1 p(z ∣ x; θ )t
θ ​t+1 D ​(q ​(z) ∥KL t+1 p(z ∣ x; θ ))t+1

Image credit: Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
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Initialize .θ ​0
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Iteration :

E-Step:

We have  such that .

t = 1

q ​(z) =1 p(z ∣ x; θ ​)0

D ​(q ​(z) ∥KL 1 p(z ∣ x; θ ​)) =0 0 ln p(x; θ ​) =0 L(q ​(z), θ ​)1 0
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Iteration :

E-Step:

M-Step:

t = 1

q ​(z) =1 p(z ∣ x; θ ​)0

θ ​ =1 ​ L(q ​(z), θ)
θ

arg max 1
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Iteration :

E-Step:

M-Step:

We have .

t = 1

q ​(z) =1 p(z ∣ x; θ ​)0

θ ​ =1 ​ L(q ​(z), θ)
θ

arg max 1

D ​(q ​(z) ∥KL 1 p(z ∣ x; θ ​)) ≠1 0
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Iteration :

E-Step:

We have  such that .

t = 2

q ​(z) =2 p(z ∣ x; θ ​)1

D ​(q ​(z) ∥KL 2 p(z ∣ x; θ ​)) =1 0 ln p(x; θ ​) =1 L(q ​(z), θ ​)2 1
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Iteration :

E-Step:

M-Step:

t = 2

q ​(z) =2 p(z ∣ x; θ ​)1

θ ​ =2 ​ L(q ​(z), θ)
θ

arg max 2
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Iteration :

E-Step:

M-Step:

We reached a stationary

point.

t = 2

q ​(z) =2 p(z ∣ x; θ ​)1

θ ​ =2 ​ L(q ​(z), θ)
θ

arg max 2
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Properties of the EM algorithm

The log-marginal likelihood is monotonically increasing.
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Properties of the EM algorithm

The log-marginal likelihood is monotonically increasing.

Proof:

Using the fact that  and 

 we deduce:

Moreover, by definintion of the M-step:

Putting all together we have:

ln p(x; θ) = L(q(z), θ) + D ​(q(z) ∥KL p(z ∣ x; θ)) q ​(z) =t+1 p(z ∣
x; θ ​)t

L(q ​(z), θ ​) =t+1 t ln p(x; θ ​),t

L(q ​(z), θ ​) ≤t+1 t+1 ln p(x; θ ​).t+1

L(q ​(z), θ ​) ≥t+1 t+1 L(q ​(z), θ ​).t+1 t

ln p(x; θ ​) ≥t+1 L(q ​(z), θ ​) ≥t+1 t+1 L(q ​(z), θ ​) =t+1 t ln p(x; θ ​).t
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Properties of the EM algorithm

The log-marginal likelihood is monotonically increasing.

The algorithm converges to a stationary point of the log-marginal likelihood.

As the problem is generally not convex, the algorithm generally converges to a local optimum

which strongly depends on the initialization.
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EM algorithm summary

The EM algorithm can be reformulated in the space of the model parameters only.

Given an initialization  of the model parameters, iterate for :

E-Step: ;

M-Step: .

This is the recipe you should remember and use to derive an EM algorithm.

θ ​0 t = 0 : T − 1

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 ​Q(θ, θ ​)
θ

arg max t
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Back to the adventures of Thomas Bayes

Let's derive an EM 
algorithm

1. 2. 3.
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Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Initialization: Random "guess" for 

E-Step: 

M-Step: 

Convergence

θ ​0

Q(θ, θ ​) =t E ​[ln p(x, z; θ)]p(z∣x;θ ​)t

θ ​ =t+1 arg max Q(θ, θ ​)θ t

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School

74

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf


Minus 10 points for 
Mr. Green, minus 5 
points for the others!

Image credit: Antoine Deleforge, Tutorial on Bayesian Learning for Signal Processing, LVA/ICA 2015 Summer School
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Lab session

Theoretical work: Derivation of the EM algorithm for the GMM model.

Practical work: Implementation of the EM algorithm.
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