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This document provides additional materials for the reference paper [1], in which we propose a probabilistic model for multichannel
audio source separation based on a class of heavy-tailed distributions. In this approach the observed mixtures and the latent sources are jointly
modeled by using the complex multivariate elliptically contoured stable distribution. The inference procedure for estimating the source signals
relies on a Monte Carlo Expectation Maximization (MCEM) algorithm. The aim of the present document is to give further details on the
derivation of this algorithm.

1. REMINDER OF THE MODEL

In this section we briefly describe the model introduced in [1]. We work in the Short-Time Fourier Transform (STFT) domain. For all
(f, n) ∈ {0, ..., F − 1} ×{0, ..., N − 1}, we consider J audio sources signals sfn ∈ CJ mixed together to form I mixtures xfn ∈ CI . The
observations and the sources are jointly modeled as following an elliptically contoured stable distribution [2], denoted by EαSc. Using the
fact that EαSc distributions are conditionally Gaussian if we introduce an impulse variable φfn ∈ R+ [3] we have:
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2
S denotes the positive α-stable distribution (see [1] for more details), with α ∈ (0, 2), and Nc denotes the multivariate complex

isotropic Gaussian distribution. Σfn ∈ C(I+J)×(I+J) is a positive definite matrix called the shape matrix and has the following structure:
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where

Σx,fn = AfΣs,fnA?
f + Σb,f . (3)

and ·? denotes Hermitian conjugation. Af = [aij,f ]ij ∈ CI×J is called the mixing matrix, Σb,f = σ2
b,fII with σ2

b,f > 0, and II is the
identity matrix of size I × I . The source covariance matrices Σs,fn are further parametrized by using a Non-negative Matrix Factorization
(NMF) model:

Σs,fn = diag([vj,fn]j), with vj,fn = [WjHj ]fn, (4)

where Wj ∈ RF×Kj

+ and Hj ∈ RKj×N
+ are called the dictionary and activation matrices of source j, respectively.

2. DERIVATION DETAILS FOR THE MONTE CARLO EXPECTATION-MAXIMIZATION ALGORITHM

In this section we give further details on the derivation of Monte Carlo Expectation-Maximization (MCEM) algorithm presented in [1]. Let
X = {xfn}f,n be the set of observed data while S = {sfn}f,n and Φ = {φfn}f,n denote the set of hidden variables. Θ = {{Wj ,Hj}j ,
{Σb,f ,Af}f} denotes the set of parameters to be estimated.



2.1. E-step

At the E-step of the MCEM algorithm we have to compute the conditional expectation of the complete data log-likelihood:
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where c
= denotes equality up to an additive constant and
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We can further write the previous conditional expectations as:

ES,Φ|X,Θ′ [·] = EΦ|X,Θ′ [ES|Φ,X,Θ′ [·]]. (6)

Moreover, from (1) to (3), the conditional distribution according to which the inner expectation in (6) is taken is given as follows:
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(6) and (7) the statistics in (5) can be further written as:
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2.2. Markov Chain Monte Carlo algorithm

The previous statistics computed at the E-step involve the computation of EΦ|X,Θ′ [φ−1
fn ]. This is achieved in [1] using a Markov Chain

Monte Carlo (MCMC) algorithm. More precisely, we develop a Metropolis-Hastings (MH) algorithm that generates samples from π(φfn) =
p(φfn|X,Θ). As explained in [1], this MH algorithm relies on the computation of the following acceptance probability:
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where q(φfn) is called the proposal distribution. In practice we choose the prior distribution of φfn as the proposal distribution: q(φfn) =
p(φfn). The acceptance probability in (8) can thus be computed according to:
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2.3. M-step

The M-step aims to maximize the function Q(Θ|Θ′) given in (5), in order to obtain a new estimate of the parameters. Zeroing the gradient
of Q(Θ|Θ′) with respect to the mixing matrix Af and the noise shape matrix Σb,f leads to the updates given in [1]. The expression of
Q(Θ|Θ′) in (5) involves the Itakura-Saito (IS) divergence [4] between p̂j,fn and vj,fn = [WjHj ]fn. Therefore, the matrices Wj and Hj

can be updated by solving the following optimization problem:
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where the IS divergence is given by:
dIS(x, y) =

x
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The minimization problem (10) can be solved efficiently by using the standard multiplicative update rules given in [4].

3. REFERENCES

[1] S. Leglaive, U. Şimşekli, A. Liutkus, R. Badeau, and G. Richard, “Alpha-stable multichannel audio source separation,” in Proc. of IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 2017.

[2] J. P. Nolan, “Multivariate elliptically contoured stable distributions: theory and estimation,” Computational Statistics, vol. 28, no. 5, pp.
2067–2089, 2013.

[3] G. Samoradnitsky and M. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite variance, vol. 1, CRC Press,
1994.

[4] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music
analysis,” Neural Computation, vol. 21, no. 3, pp. 793–830, 2009.


