

PARIS-SACLAY

Alpha-Stable Multichannel Audio Source Separation

Simon Leglaive¹, Umut Șimșekli¹, Antoine Liutkus², Roland Badeau¹, Gaël Richard¹ 1: LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France

2: Inria, Speech Processing Team, Villers-lès-Nancy, France

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.

L. Introduction

${\bf Motivations:}$

▷ Current approaches are based on Gaussian models in which data are constrained to lie just within a few standard deviations from the mean.

Contributions:

- ▷ Generalization of the Gaussian source separation framework [1] using the complex multivariate elliptically contoured stable distribution.
- ▷ Inference with the Monte Carlo Expectation Maximization algorithm.

▷ The proposed approach relies on a heavy-tailed model. It allows us to account for spurious data or important uncertainty in the model.

Performance improvements in audio source separation under corrupted mixtures and coding-based informed source separation.

2. Model	3. Inference	
Gaussian model [1]	Model parameter set: $\Theta = \{ \{ \mathbf{W}_j, \mathbf{H}_j \}_j, \{ \Sigma_{\mathbf{b},f}, \mathbf{A}_f \}_f \}.$	
\triangleright Observed mixtures: $\mathbf{x}_{fn} = [x_{1,fn},, x_{I,fn}]^T \in \mathbb{C}^I;$	Monte Carlo Expectation Maximization algorithm	
▷ Latent sources: $\mathbf{s}_{fn} = [s_{1,fn},, s_{J,fn}]^T \in \mathbb{C}^J$. ▷ Joint distribution of the latent and observed variables:	$\triangleright \mathbf{X} = \{\mathbf{x}_{fn}\}_{f,n}, \mathbf{S} = \{\mathbf{s}_{fn}\}_{f,n}, \mathbf{\Phi} = \{\phi_{fn}\}_{f,n}.$	
	> Iterative algorithm:	
$\begin{pmatrix} \mathbf{x}_{fn} \\ \mathbf{s}_{fn} \end{pmatrix} \sim \mathcal{N}_c \left(0, \mathbf{\Sigma}_{fn} = \begin{pmatrix} \mathbf{\Sigma}_{\mathbf{x},fn} & \mathbf{A}_f \mathbf{\Sigma}_{\mathbf{s},fn} \\ \mathbf{\Sigma}_{\mathbf{s},fn} \mathbf{A}_f^{\star} & \mathbf{\Sigma}_{\mathbf{s},fn} \end{pmatrix} \right),$	• E-step: $Q(\Theta \Theta_{\text{old}}) = \mathbb{E}_{\mathbf{S}, \Phi \mathbf{X}, \Theta_{\text{old}}}[\ln p(\mathbf{X}, \mathbf{S}, \Phi \Theta)];$	
	• M-step: $\Theta_{\text{new}} = \arg \max_{\Theta} Q(\Theta \Theta_{\text{old}}).$	
where $\Sigma_{\mathbf{x},fn} = \mathbf{A}_f \Sigma_{\mathbf{s},fn} \mathbf{A}_f^{\star} + \Sigma_{\mathbf{b},f}.$	▷ The E-step requires the computation of $\hat{\phi}_{fn}^{-1} := \mathbb{E}_{\phi_{fn} \mathbf{x}_{fn}; \mathbf{\Theta}}[\phi_{fn}^{-1}]$	
• $\mathbf{A}_f \in \mathbb{C}^{I \times J}$ is the mixing matrix;	\rightarrow not available in an analytical form.	
 • Λ denotes the Hermitian conjugate; • Σ_{s,fn} is the source covariance matrix parametrized by a non-negative matrix factorization (NMF) model: 	▷ Metropolis-Hastings algorithm for approximating intractable expectations: compute an average of samples drawn from $p(\phi_{fn} \mathbf{x}_{fn}; \boldsymbol{\Theta})$.	
$\Sigma_{s,fn} = \operatorname{diag}([v_{j,fn}]_j), \text{ with } v_{j,fn} = [\mathbf{W}_j \mathbf{H}_j]_{fn} \in \mathbb{R}_+;$	Source posterior moments , i.e. according to $p(\mathbf{s}_{fn} \mathbf{x}_{fn};\boldsymbol{\Theta})$	

• $\Sigma_{\mathbf{b},f}$ is the noise covariance matrix.

Proposed elliptically contoured stable model

$$\begin{pmatrix} \mathbf{x}_{fn} \\ \mathbf{s}_{fn} \end{pmatrix} \sim \mathcal{E}\alpha \mathcal{S}_c(\mathbf{\Sigma}_{fn}) \iff \begin{cases} \phi_{fn} \sim \mathcal{P}\frac{\alpha}{2}\mathcal{S}\left(2\left(\cos\frac{\pi\alpha}{4}\right)^{2/\alpha}\right); \\ \begin{pmatrix} \mathbf{x}_{fn} \\ \mathbf{s}_{fn} \end{pmatrix} |\phi_{fn} \sim \mathcal{N}_c(0, \phi_{fn}\mathbf{\Sigma}_{fn}), \end{cases}$$

with $\alpha \in (0, 2]$ and the same structure of Σ_{fn} as in the Gaussian case.

4. Source Separation Under Corrupted Mixtures

▷ **Proof of concept experiment**: A few number of randomly selected time-frequency points are set to very high values in the mixture signals before performing separation (\rightarrow highly audible noise).

 \triangleright Claim: ϕ_{fn} captures the uncertainty about the model at time-frequency point (f, n). This impulse variable should capture the outliers.

▷ **Modified Wiener filtering** for *canceling* the noise:

 $\hat{\mathbf{s}}_{fn}^{\text{modif}} = \mathbf{G}_{\mathbf{s},fn} \hat{\phi}_{fn}^{-1} \mathbf{x}_{fn}.$

$$\triangleright \ \hat{\mathbf{s}}_{fn} := \mathbb{E}_{\mathbf{s}_{fn} | \mathbf{x}_{fn}; \boldsymbol{\Theta}}[\mathbf{s}_{fn}] = \mathbf{G}_{\mathbf{s}, fn} \mathbf{x}_{fn}, \qquad \mathbf{G}_{\mathbf{s}, fn} = \boldsymbol{\Sigma}_{\mathbf{s}, fn} \mathbf{A}_{f}^{\star} \boldsymbol{\Sigma}_{\mathbf{x}, fn}^{-1}.$$

The source estimate is given by $\hat{\mathbf{s}}_{fn}$ (Wiener filtering). It does not depend on ϕ_{fn} and it is exactly the same as in the Gaussian case.

$$\Sigma_{s,fn}^{post} := \mathbb{E}_{\mathbf{s}_{fn} | \mathbf{x}_{fn}; \mathbf{\Theta}} \Big[\big(\mathbf{s}_{fn} - \hat{\mathbf{s}}_{fn} \big) \big(\mathbf{s}_{fn} - \hat{\mathbf{s}}_{fn} \big)^{\star} \Big]$$
$$= \mathbb{E}_{\phi_{fn} | \mathbf{x}_{fn}; \mathbf{\Theta}} [\phi_{fn}] \big(\mathbf{\Sigma}_{\mathbf{s},fn} - \mathbf{G}_{\mathbf{s},fn} \mathbf{A}_{f} \mathbf{\Sigma}_{\mathbf{s},fn} \big).$$

The posterior mean of ϕ_{fn} does not admit an analytical form. It is approximated using the Metropolis-Hastings algorithm.

5. Coding-based Informed Source Separation

▷ Model stream: Parameters representing the source posterior means. ▷ Source stream: Error between the true source coefficients and their posterior means, encoded through the use of $\Sigma_{s.fn}^{post}$.

Dataset: 8 stereo mixtures. The duration ranges from 12 to 28 seconds. Each mixture contains between 2 and 4 instrumental sources.
 Performance measure: Signal-to-Distortion Ratio (SDR) in dB.
 Results: Gaussian model with standard Wiener filtering vs. elliptically contoured stable model with the modified estimation procedure (α = 1.5):

Initialization	Oracle		Blind	
Model	Gaussian	α -stable	Gaussian	α -stable
SDR (dB)	-3.7	4.5	-6.7	0.6

7. References

▷ Using the elliptically contoured stable distribution allows us to take uncertainty about the model into account.

6. Conclusion

▷ Future work: Justified source estimator that uses the impulse variables.

[1] A. Ozerov and C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE TASLP, 2010.
[2] A. Liutkus, A. Ozerov, R. Badeau, G. Richard, Spatial coding-based informed source separation. Proc. of EUSIPCO, 2012.