

Autoregressive Moving Average Modeling of Late Reverberation in the Frequency Domain

Simon LEGLAIVE, Roland BADEAU, Gaël RICHARD LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France European Signal Processing Conference (EUSIPCO), 2016

Introduction

▷ Bayesian approaches for audio source separation and dereverberation need probabilistic priors over room responses.

▷ Statistical room acoustics: The frequency response of late reverberation is a centered, proper and Wide Sense Stationary (WSS) Complex Gaussian Random Process $(CGRP)^1$.

▷ **Objective**: Statistical characterization and parametric modeling of this random process.

 \triangleright Main idea: Time domain dynamics of late reverberation (exponential

Theoretical Statistical Characterization

We can show that the PSD is related to the PTP by:

 $\phi(t) = T\bar{h}_l(T-t).$

It follows from the Wiener-Khinchin theorem:

$$\gamma(m) = \mathcal{F}_T^{-1}\{\phi(t)\} = P_0^2 e^{-2T/\tau} \frac{1 - e^{(j2\pi m/T + 2/\tau)(T - t_0 + 1)}}{1 - e^{j2\pi m/T + 2/\tau}}, \qquad (2)$$

(1)

(3)

with
$$P_0^2 = \sigma_{rev}^2 e^{2T/\tau} \frac{1 - e^{2/\tau}}{1 - e^{2(T - t_0 + 1)/\tau}}.$$

decay) induces specific frequency correlations [1].

▷ Contributions:

- \diamond Theoretical expressions of the Power Spectral Density (PSD) and Autocovariance Function (ACVF) given some room parameters.
- ♦ Autoregressive Moving Average (ARMA) parametrization of the PSD and ACVF \rightarrow new generative model.

¹Valid above Schroeder's frequency.

Room Response Decomposition

For t, k = 0, ..., T - 1: $\stackrel{\mathcal{F}_T}{\rightleftharpoons} \quad H(k) = H_e(k) + H_l(k)$ $h(t) = h_e(t) + h_l(t)$ Room impulse response (RIR) Room frequency response (RFR)

with \mathcal{F}_T the discrete Fourier transform operator.

Room Impulse Response

1		

Experimental validation: Monte-Carlo simulation for computing empirical ACVFs from simulated and measured room responses.

RMA parametrization

Statistical Room Acoustics

 \triangleright Late reverberation power decays exponentially, we thus define the **Power Temporal Profile (PTP)** by:

 $\bar{h}_l(t) = \mathbb{E}[h_l^2(t)] = P_0^2 e^{-2t/\tau} \mathbb{1}_{t > t_0}(t).$

 P_0^2 : related to the total power of late reverberation; $\tau = \frac{T_{60}f_s}{3\ln(10)}$ samples; $\mathbb{E}[\cdot]$: expectation = spatial averaging; $\mathbb{1}_{(\cdot)}(t)$: indicator function.

Objective: Describe the statistical properties with a parametric model.

 \triangleright We assume that $\{H_l(k)\}_k$ follows an ARMA(P, Q) model.

 \triangleright The ARMA parameters can be estimated from the theoretical ACVF, without the need of any data.

 \triangleright The ARMA model is generative.

 $\triangleright \{H_l(k)\}_k$ is a T-periodic, centered and proper CGRP with

♦ Autocovariance Function:

 $\gamma(m) = \mathbb{E}[H_l(k)H_l(k-m)^*];$

♦ Power Spectral Density:

 $\phi(t) = \frac{1}{T} \mathbb{E}[|\mathcal{F}_T\{H_l(k)\}|^2].$

 \triangleright Variance $\sigma_{rev}^2 := \gamma(0)$ of $\{H_l(k)\}_k$:

 $\sigma_{ren}^2 \propto (1-\alpha)/(\pi \alpha S).$

 α : average absorption coefficient; S: total wall area (m²).

Figure 3: ARMA(7,2)parametrization.

Figure 4: Synthesized late RIR from the ARMA(7,2) model.

Conclusions

▷ Theoretical statistical characterization and generative ARMA model of late reverberation in the frequency domain.

▷ Suitable model for defining a prior over late reverberation in audio source separation and dereverberation.

▷ Future work: Non-stationary ARMA model for frequency dependent reverberation times.

Reference: [1] M. R. Schroeder, "Frequency-correlation functions of frequency responses in rooms," JASA, 1962.