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6. Inference

Speech enhancement aims to recover a clean speech signal from a In the short-term Fourier transform domain, independently for all || > Unsupervised model parameters to be estimated:

1. Introduction 3. Supervised deep generative speech model

noisy mixture signal. (f,n)eB={0,.... F —1} x{0,..., N — 1} we have [1, 2|: 0, {g fgn € RIV"L 62 = 152 € R }F—l}
n +JIn= 07 b — b, f +J =0

Stn | By ~ No(0,07 ¢(hy,)),  where h, ~ N(0,I).
% & W — @—» W ( ! ) > Observed variables: X = {Zy }(f.n)cB
w—/ =l N—1

2
noisy mixture clean {‘Ts,f (hy) € Ry £=0 > Latent variables: z = {hn, {o fn}?:_& -
signal speech signal I B
L > i 41198 MCEM algorithm
Motivation h, € R ™ 1N M E
. . . . . /\ - d OB From an initialization 07 of the parameters, iterate:
(Gaussian noise modeling based on nonnegative matrix u ’

factorization (NMF) is common in semi-supervised speech
enhancement, but it is limiting for certain types of noise.
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© E'Step: Q(Hua 92) — 4:p(z|x;68,9;:)[lnp(xa Z, 087 Hu)]

Intractable expectation — Markov chain Monte Carlo method.
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Example noise signal recorded inside an accelerating subway:

o M-Step: 0, < argmaxy Q(0.,;0},).

Minorize-maximize approach leading to multiplicative update rules.
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The parameters @, of the neural network are learned from a dataset of
clean speech signals. They are estimated by maximizing a lower bound Posterior mean speech estimate with Wiener-like filtering

of the log-likelihood, in the framework of variational autoencoders [3|. Let &fn = /nsfn be the scaled speech STFT coefficients

4. Unsupervised alpha-stable noise model . i 51— E gno? ;(hy)
an — ~ ‘§ mn X;9u798 an — - Z X;H’U,708
P(Sfn ) p(z| )  gno f( ) _|_¢fngl3,f_

Contribution Marginal circularly symmetric alpha-stable noise model

> Flexible alpha-stable I}Oise mo.del combined with a deep generative Independently for all (f,n) € B: 7 Reference method [1]
speech model for semi-supervised speech enhancement. '
> Monte Carlo expectation-maximization (MCEM) algorithm. bfn ~ SaSc(op,f), The speech model is the same, only the noise model differs. It is Gaus-

> QOutperforms the counterpart approach |1| based on Gaussian where ag’ ; can be understood as the noise power spectral density (PSD). sian with NMF-based variance parametrization:
noise modeling with NMF variance parametrization.

Equivalent conditionally Gaussian noise model btn ~ N(0,(WH)¢,,),

: - — : o N FxK KxN : -
2. Symmetric and positive alpha-stable distributions |RZ R AU IE NI BN i ( CHCTMES 7755(2 cos(mar/4)* ) where both W € Ry "% and H € R™™ are estimated from the noisy

mixture signal using an MCEM algorithm.

Alpha-stable distributi h -tatled distributions. . . . . .
PUASLAbIC CISTHDULIONS att Beavy-tatct CISLHDULIOHS ¢rn € Ry 18 an impulse variable carrying uncertainty about the sta-

probability density functions of SaS(a) and P5S(0) tionarity assumption of the marginal noise model. 3. Expe” ments
! S, ‘ ' ; ]

> Training set (~ 4 hours): 462 speakers x 10 sentences X 3 seconds.
> Test set: 168 noisy mixtures (~ 3 seconds) at a 0 dB SNR.

> Noise types: Domestic or office environments, nature, indoor public
spaces, street, transportation.
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influence of the noise characteristic exponent
35 -

a €10, 2| is the characteristic exponent and ¢ € R the scale parameter. RO RO o Ty TP £ comparison between the proposed and reference methods
. . ¢ - T = T 40 '
For a = 2, we recover the Gaussian distribution: S2S(0) = N(0,207). I 1 I
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5. Mixture model
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References The observed mixture signal is modeled as follows:

PESQ in [-0.5, 4.5]
STOI in [0, 1]
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