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1. Introduction
Speech enhancement aims to recover a clean speech signal from a

noisy mixture signal.

Motivation

Gaussian noise modeling based on nonnegative matrix
factorization (NMF) is common in semi-supervised speech
enhancement, but it is limiting for certain types of noise.

Example noise signal recorded inside an accelerating subway:
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Contribution

. Flexible alpha-stable noise model combined with a deep generative
speech model for semi-supervised speech enhancement.

. Monte Carlo expectation-maximization (MCEM) algorithm.

. Outperforms the counterpart approach [1] based on Gaussian
noise modeling with NMF variance parametrization.

2. Symmetric and positive alpha-stable distributions
Alpha-stable distributions are heavy-tailed distributions.

α ∈]0, 2] is the characteristic exponent and σ ∈ R+ the scale parameter.

For α = 2, we recover the Gaussian distribution: S2S(σ) = N (0, 2σ2).
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3. Supervised deep generative speech model
In the short-term Fourier transform domain, independently for all
(f, n) ∈ B = {0, ..., F − 1} × {0, ..., N − 1} we have [1, 2]:

sfn | hn ∼ Nc
(
0, σ2

s,f (hn)
)
, where hn ∼ N (0, I).
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The parameters θs of the neural network are learned from a dataset of
clean speech signals. They are estimated by maximizing a lower bound
of the log-likelihood, in the framework of variational autoencoders [3].

4. Unsupervised alpha-stable noise model

Marginal circularly symmetric alpha-stable noise model

Independently for all (f, n) ∈ B:
bfn ∼ SαSc(σb,f ),

where σ2
b,f can be understood as the noise power spectral density (PSD).

Equivalent conditionally Gaussian noise model

bfn | φfn ∼ Nc(0, φfnσ2
b,f ), where φfn ∼ P

α

2
S
(
2 cos(πα/4)2/α

)
.

φfn ∈ R+ is an impulse variable carrying uncertainty about the sta-
tionarity assumption of the marginal noise model.

impulse variablesnoise PSDreconstructed noise spectrogramoriginal noise spectrogram

5. Mixture model
The observed mixture signal is modeled as follows:

xfn =
√
gnsfn + bfn,

where gn ∈ R+ represents a frame-dependent gain. We further consider
the conditional independence of the speech and noise signals so that:

xfn | hn, φfn ∼ Nc
(
0, gnσ

2
s,f (hn) + φfnσ

2
b,f

)
.

6. Inference
. Unsupervised model parameters to be estimated:

θu =
{
g = {gn ∈ R+}N−1n=0 ,σ

2
b = {σ2

b,f ∈ R+}F−1f=0

}
. Observed variables: x = {xfn}(f,n)∈B

. Latent variables: z =
{
hn, {φfn}F−1f=0

}N−1
n=0

MCEM algorithm

From an initialization θ?u of the parameters, iterate:

◦ E-Step: Q(θu;θ
?
u) = Ep(z|x;θs,θ?

u)
[ln p(x, z;θs,θu)].

Intractable expectation → Markov chain Monte Carlo method.

◦ M-Step: θ?u ← argmaxθu
Q(θu;θ

?
u).

Minorize-maximize approach leading to multiplicative update rules.

Posterior mean speech estimate with Wiener-like �ltering

Let s̃fn =
√
gnsfn be the scaled speech STFT coe�cients.

ˆ̃sfn = Ep(s̃fn|x;θu,θs)[s̃fn] = Ep(z|x;θu,θs)

[
gnσ

2
s,f (hn)

gnσ2
s,f (hn) + φfnσ2

b,f

]
xfn.

7. Reference method [1]
The speech model is the same, only the noise model di�ers. It is Gaus-
sian with NMF-based variance parametrization:

bfn ∼ Nc(0, (WH)f,n),

where both W ∈ RF×K+ and H ∈ RK×N+ are estimated from the noisy
mixture signal using an MCEM algorithm.

8. Experiments
. Training set (∼ 4 hours): 462 speakers × 10 sentences × 3 seconds.
. Test set: 168 noisy mixtures (∼ 3 seconds) at a 0 dB SNR.
. Noise types: Domestic or o�ce environments, nature, indoor public
spaces, street, transportation.

influence of the noise characteristic exponent
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. (SDR, SIR, SAR) measure (global quality, interferences, artifacts).

. (PESQ, STOI) measure (perceptual quality, intelligibility).


