

Speech Enhancement with Variational Autoencoders and Alpha-Stable Distributions

Simon Leglaive¹

Umut ŞIMŞEKLI²

Antoine LIUTKUS^{1,3}

Laurent GIRIN^{1,4}

Radu $HORAUD^1$

UNIVERSITÉ Grenoble Alpes

1: Inria

2: LTCI, Télécom ParisTech, Université Paris-Saclay

3: LIRMM

4: Univ. Grenoble Alpes, Grenoble INP, GIPSA-lab

LIRMM

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019

1. Introduction

Speech enhancement aims to recover a clean speech signal from a noisy mixture signal.

Motivation

Gaussian noise modeling based on nonnegative matrix factorization (NMF) is common in semi-supervised speech enhancement, but it is limiting for certain types of noise.

Example noise signal recorded inside an accelerating subway:

Contribution

- ▶ Flexible alpha-stable noise model combined with a deep generative speech model for semi-supervised speech enhancement.
- ▶ Monte Carlo expectation-maximization (MCEM) algorithm.
- Dutperforms the counterpart approach [1] based on Gaussian noise modeling with NMF variance parametrization.

2. Symmetric and positive alpha-stable distributions

Alpha-stable distributions are heavy-tailed distributions.

 $\alpha \in]0,2]$ is the characteristic exponent and $\sigma \in \mathbb{R}_+$ the scale parameter. For $\alpha = 2$, we recover the Gaussian distribution: $\mathcal{S}_2 \mathcal{S}(\sigma) = \mathcal{N}(0, 2\sigma^2)$

References

- [1] S. Leglaive et al., "A variance modeling framework based on variational autoencoders for speech enhancement", IEEE MLSP, 2018.
- [2] Y. Bando et al., "Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization", IEEE ICASSP, 2018.
- [3] D. P. Kingma and M. Welling, "Auto-encoding variational Bayes", ICLR, 2014.

3. Supervised deep generative speech model

In the short-term Fourier transform domain, independently for all | > Unsupervised model parameters to be estimated: $(f,n) \in \mathbb{B} = \{0,...,F-1\} \times \{0,...,N-1\}$ we have [1, 2]:

$$s_{fn} \mid \mathbf{h}_n \sim \mathcal{N}_c(0, \sigma_{s,f}^2(\mathbf{h}_n)), \quad \text{where } \mathbf{h}_n \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

The parameters $\boldsymbol{\theta}_s$ of the neural network are learned from a dataset of clean speech signals. They are estimated by maximizing a lower bound of the log-likelihood, in the framework of variational autoencoders [3].

4. Unsupervised alpha-stable noise model

Marginal circularly symmetric alpha-stable noise model

Independently for all $(f, n) \in \mathbb{B}$:

$$b_{fn} \sim \mathcal{S}\alpha \mathcal{S}_c(\sigma_{b,f}),$$

where $\sigma_{b,f}^2$ can be understood as the noise power spectral density (PSD)

Equivalent conditionally Gaussian noise model

$$b_{fn} \mid \phi_{fn} \sim \mathcal{N}_c(0, \phi_{fn}\sigma_{b,f}^2), \quad \text{where } \phi_{fn} \sim \mathcal{P}\frac{\alpha}{2}\mathcal{S}\Big(2\cos(\pi\alpha/4)^{2/\alpha}\Big).$$

 $\phi_{fn} \in \mathbb{R}_+$ is an impulse variable carrying uncertainty about the stationarity assumption of the marginal noise model.

5. Mixture model

The observed mixture signal is modeled as follows:

$$x_{fn} = \sqrt{g_n} s_{fn} + b_{fn},$$

where $g_n \in \mathbb{R}_+$ represents a frame-dependent gain. We further consider the conditional independence of the speech and noise signals so that:

$$x_{fn} \mid \mathbf{h}_n, \phi_{fn} \sim \mathcal{N}_c \left(0, g_n \sigma_{s,f}^2(\mathbf{h}_n) + \phi_{fn} \sigma_{b,f}^2 \right).$$

6. Inference

$$\boldsymbol{\theta}_u = \left\{ \mathbf{g} = \{ g_n \in \mathbb{R}_+ \}_{n=0}^{N-1}, \boldsymbol{\sigma}_b^2 = \{ \sigma_{b,f}^2 \in \mathbb{R}_+ \}_{f=0}^{F-1} \right\}$$

- \triangleright Observed variables: $\mathbf{x} = \{x_{fn}\}_{(f,n)\in\mathbb{B}}$
- \triangleright Latent variables: $\mathbf{z} = \left\{\mathbf{h}_n, \left\{\phi_{fn}\right\}_{f=0}^{F-1}\right\}_{n=0}^{N-1}$

MCEM algorithm

From an initialization $\boldsymbol{\theta}_{u}^{\star}$ of the parameters, iterate:

 $Q(\boldsymbol{\theta}_u; \boldsymbol{\theta}_u^{\star}) = \mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}_s,\boldsymbol{\theta}_u^{\star})}[\ln p(\mathbf{x},\mathbf{z};\boldsymbol{\theta}_s,\boldsymbol{\theta}_u)].$ \circ E-Step: Intractable expectation \rightarrow Markov chain Monte Carlo method.

 \circ M-Step: $\boldsymbol{\theta}_{u}^{\star} \leftarrow \operatorname{arg\,max}_{\boldsymbol{\theta}_{u}} Q(\boldsymbol{\theta}_{u}; \boldsymbol{\theta}_{u}^{\star}).$

Minorize-maximize approach leading to multiplicative update rules.

Posterior mean speech estimate with Wiener-like filtering

Let $\tilde{s}_{fn} = \sqrt{g_n} s_{fn}$ be the scaled speech STFT coefficients.

$$\hat{\tilde{s}}_{fn} = \mathbb{E}_{p(\tilde{s}_{fn}|\mathbf{x};\boldsymbol{\theta}_u,\boldsymbol{\theta}_s)}[\tilde{s}_{fn}] = \mathbb{E}_{p(\mathbf{z}|\mathbf{x};\boldsymbol{\theta}_u,\boldsymbol{\theta}_s)} \left[\frac{g_n \sigma_{s,f}^2(\mathbf{h}_n)}{g_n \sigma_{s,f}^2(\mathbf{h}_n) + \phi_{fn} \sigma_{b,f}^2} \right] x_{fn}.$$

7. Reference method [1]

The speech model is the same, only the noise model differs. It is Gaussian with NMF-based variance parametrization:

$$b_{fn} \sim \mathcal{N}_c(0, (\mathbf{WH})_{f,n}),$$

where both $\mathbf{W} \in \mathbb{R}_{+}^{F \times K}$ and $\mathbf{H} \in \mathbb{R}_{+}^{K \times N}$ are estimated from the noisy mixture signal using an MCEM algorithm.

8. Experiments

- \triangleright Training set (\sim 4 hours): 462 speakers \times 10 sentences \times 3 seconds.
- \triangleright Test set: 168 noisy mixtures (\sim 3 seconds) at a 0 dB SNR.
- ▷ Noise types: Domestic or office environments, nature, indoor public spaces, street, transportation.

- (SDR, SIR, SAR) measure (global quality, interferences, artifacts).
- ▷ (PESQ, STOI) measure (perceptual quality, intelligibility).