Multichannel Audio Source Separation:

Variational Inference of Time-Frequency Sources from Time-Domain Observations

Simon Leglaive, Roland Badeau, Gaël Richard

LTCI, Télécom ParisTech, Université Paris Saclay

IEEE International Conference on Acoustics Speech and Signal Processing New-Orleans, LA, USA

March 6, 2017

Multichannel audio source separation

Objective: Recover source signals from the observation of several mixtures.
Context: Under-determined and reverberant.

Time-frequency source representation

Time-frequency (TF) transforms provide meaningful representations.

Modeling reverberant mixtures (1)

Convolutive model in the time domain:

Modeling reverberant mixtures (2)

Convolutive model in the Short-Term Fourier Transform (STFT) domain:

Error due to the STFT approximation

Average relative squared error:
$\Delta x=\frac{1}{\operatorname{IFN}} \sum_{i, f, n} \frac{\left|x_{i, f n}-\hat{x}_{i, f n}\right|^{2}}{\left|x_{i, f n}\right|^{2}}$ with $x_{i, f n}=\operatorname{STFT}\left[x_{i}(t)\right]$

Proposed approach

TF source model and time-domain convolutive mixture model.

Proposed approach

TF source model and time-domain convolutive mixture model.

$\psi_{f n}(t)$ is a Modified Discrete Cosine Transform (MDCT) atom.

Outline

Probabilistic model

Experiments

Future work

Probabilistic modeling with latent variables

- Latent source random variables: $\mathbf{s}=\left\{s_{j, f n} \in \mathbb{R}\right\}_{j, f, n}$;
- Observed random variables: $\mathbf{x}=\left\{x_{i}(t) \in \mathbb{R}\right\}_{i, t}$.

Defining the probabilistic model

$$
p(\mathbf{x}, \mathbf{s} ; \boldsymbol{\theta})=\underbrace{p(\mathbf{s} ; \boldsymbol{\theta})}_{\text {prior distribution of } \mathbf{s}} \times \overbrace{p(\mathbf{x} \mid \mathbf{s} ; \boldsymbol{\theta})}^{\text {conditional distribution of } \mathbf{x} \text { given } \mathbf{s}}
$$

where $\boldsymbol{\theta}$ is a set of deterministic parameters.

- What prior knowledge do we have on the latent source variables?
- How are the data generated from the latent unobserved variables?

Prior distribution of the latent variables

Gaussian source model based on Non-negative Matrix Factorization [1].

All the sources and TF points are further assumed to be independent.
[1] C. Févotte, N. Bertin, J.-L. Durrieu. "Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis". Neural computation, 2009.

Conditional distribution of x given s

Gaussian modeling error

$$
x_{i}(t)=\sum_{j=1}^{J}\left[a_{i j} \star s_{j}\right](t)+b_{i}(t)
$$

with $\quad b_{i}(t) \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \sigma_{i}^{2}\right) \quad$ and $\quad s_{j}(t)=\sum_{f=0}^{F-1} \sum_{n=0}^{N-1} s_{j, f n} \psi_{f n}(t)$.

Conditional distribution

$$
x_{i}(t) \mid \mathbf{s} ; \boldsymbol{\theta} \sim \mathcal{N}\left(\sum_{j=1}^{J} \sum_{f=0}^{F-1} \sum_{n=0}^{N-1} s_{j, f_{n}}\left[a_{i j} \star \psi_{f n}\right](t), \sigma_{i}^{2}\right)
$$

Probabilistic model

Inference

Experiments

Future work

Statistical inference

We are interested in the posterior distribution $p(\mathbf{s} \mid \mathbf{x} ; \boldsymbol{\theta})$, with $\boldsymbol{\theta}=\left\{\left\{\mathbf{W}_{j}, \mathbf{H}_{j}\right\}_{j},\left\{a_{i j}(t)\right\}_{i, j, t},\left\{\sigma_{i}^{2}\right\}_{i}\right\}$.

Source and parameter estimation

- Source estimation according to the posterior mean:

$$
\hat{\mathbf{s}}=\mathbb{E}_{\mathbf{s} \mid \mathbf{x} ; \boldsymbol{\theta}^{\star}}[\mathbf{s}]
$$

- Maximum likelihood estimation of the parameters:

$$
\boldsymbol{\theta}^{\star}=\arg \max _{\boldsymbol{\theta}} p(\mathbf{x} ; \boldsymbol{\theta}) .
$$

The posterior distribution is Gaussian but with a high-dimensional full covariance matrix \rightarrow Variational inference.

Variational inference

- We want to find $q \in \mathcal{F}$ which approximates $p(\mathbf{s} \mid \mathbf{x} ; \boldsymbol{\theta})$.
- Taking the KL divergence as a measure of fit, we can show that:

$$
\begin{equation*}
K L(q \| p(\mathbf{s} \mid \mathbf{x} ; \boldsymbol{\theta}))=\underbrace{\ln p(\mathbf{x} ; \boldsymbol{\theta})}_{\text {Log-likelihood }}-\underbrace{\mathcal{L}(q ; \boldsymbol{\theta})}_{\text {Variational Free Energy }} \tag{3}
\end{equation*}
$$

where $\mathcal{L}(q ; \boldsymbol{\theta})=\left\langle\ln \left(\frac{p(\mathbf{x}, \mathbf{s} ; \boldsymbol{\theta})}{q(\mathbf{s})}\right)\right\rangle_{q}$ and $\langle f(\mathbf{s})\rangle_{q}=\int f(\mathbf{s}) q(\mathbf{s}) d \mathbf{s}$.

- Variational Expectation-Maximization algorithm:
- E-step: $q^{\star}=\arg \min K L\left(q \| p\left(\mathbf{s} \mid \mathbf{x} ; \boldsymbol{\theta}_{\text {old }}\right)\right)=\arg \max \mathcal{L}\left(q ; \boldsymbol{\theta}_{\text {old }}\right)$;

$$
q \in \mathcal{F} \quad \quad q \in \mathcal{F}
$$

- M-step: $\boldsymbol{\theta}_{\text {new }}=\underset{\boldsymbol{\theta}}{\arg \max } \mathcal{L}\left(q^{\star} ; \boldsymbol{\theta}\right)$.

Mean-field approximation

\mathcal{F} : set of pdf over \mathbf{s} that factorize as

$$
q(s)=\prod_{j=1}^{J} \prod_{f=0}^{F-1} \prod_{n=0}^{N-1} q_{j f n}\left(s_{j, f n}\right)
$$

Under the mean-field approximation we can show that:

$$
\mathrm{q}_{\mathrm{jfn}}^{\star}\left(\mathrm{s}_{\mathrm{j}, \mathrm{fn}}\right)=\underset{\mathrm{q}_{\mathrm{jfn}}}{\arg \max } \mathcal{L}\left(\mathrm{q} ; \boldsymbol{\theta}_{\mathrm{old}}\right)=\mathrm{N}\left(\mathrm{~s}_{\mathrm{j}, \mathrm{fn}} ; \mathrm{m}_{\mathrm{j}, \mathrm{fn}}, \gamma_{\mathrm{j}, \mathrm{fn}}\right) .
$$

M-Step

Maximize (or only increase) the variational free energy w.r.t the $\boldsymbol{\theta}$.

NMF parameters

Compute an NMF with the Itakura-Saito divergence on:

$$
\left\langle s_{j, f n}^{2}\right\rangle_{q^{\star}}=m_{j, f n}^{2}+\gamma_{j, f n}
$$

\rightarrow standard multiplicative update rules.

Mixing filters

Solve a Toeplitz system of equations for $\mathbf{a}_{i j}=\left[a_{i j}(0), \ldots, a_{i j}\left(L_{a}-1\right)\right]^{T}$.
Noise variance

$$
\sigma_{i}^{2}=\frac{1}{T} \sum_{t=0}^{T-1}\left\langle\left(x_{i}(t)-\sum_{j=1}^{J}\left[a_{i j} \star s_{j}\right](t)\right)^{2}\right\rangle_{q^{\star}}
$$

Probabilistic model

Experiments

Future work

Experiments

- Dataset:
- 5 reverberation times: $32,64,128,256,512 \mathrm{~ms} ;$
- 5×8 stereo mixtures created with synthetic room impulse responses;
- Number of sources: 3 to 5 ;
- Mixture length: 12 to 28 seconds.
- Baseline approach [2]
- Gaussian NMF-based source model with STFT approximation of the convolutive mixing process.
- Oracle initialization:
- Parameters are initialized using the true source signals and mixing filters.
- Performance measure:
- Signal-to-Distortion Ratio (SDR).
[2] A. Ozerov and C. Févotte. "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation". IEEE Transactions on Audio, Speech and Language Processing, 2010.

Oracle source separation results

STFT and MDCT analysis/synthesis window length: 128 ms .

Other standard energy ratios (ISR, SIR, SAR) are in the paper.

Semi-blind audio example

Room impulse responses from the RWCP database: recorded in a real room (reverberation time of 470 ms).

Semi-blind setting: The mixing filters are known and fixed while all the other parameters are blindly estimated.

Stereo mixture:

	Original	Baseline	Proposed
Drums	()	()	()
Guitar 1	(0)	(0)	(0)
Guitar 2	(0)	()	()
Voice	(0)	(0)	()
Bass	(0)	()	()

Musical excerpt from "Ana" by Vieux Farka Toure. MTG MASS database.

Probabilistic model

Inference

Experiments

Future work

Future work

- Multi-resolution time-frequency source modeling;
- Probabilistic priors on the mixing filters in the time-domain;

- Blind source separation method.

Thank you

More audio examples and Matlab code available at:
https://perso.telecom-paristech.fr/leglaive/

