

Multichannel Audio Source Separation: Variational Inference of Time-Frequency Sources from Time-Domain Observations

Simon Leglaive, Roland Badeau, Gaël Richard LTCI, Télécom ParisTech, Université Paris Saclay

IEEE International Conference on Acoustics Speech and Signal Processing New-Orleans, LA, USA

March 6, 2017

Introduction • 0 0 0 0 0 0 Probabilistic model

Inference

Experiments

Future work

Multichannel audio source separation

Objective: Recover source signals from the observation of several mixtures.

Context: Under-determined and reverberant.

Probabilistic model

Inference

Experiments

Future work

Time-frequency source representation

Time-frequency (TF) transforms provide meaningful representations.

 Introduction
 Probabilistic model
 Inference
 Experiments
 Future work

 000
 000
 000
 000
 000
 0

Modeling reverberant mixtures (1)

Convolutive model in the time domain:

 Introduction
 Probabilistic model
 Inference
 Experiments
 Future work

 000
 000
 000
 000
 000
 0

Modeling reverberant mixtures (2)

Convolutive model in the Short-Term Fourier Transform (STFT) domain:

Introduction	Probabilistic model	Inference	Experiments	Future work
0000000	000	0000	000	0

Error due to the STFT approximation

Average relative squared error:

$$\Delta x = \frac{1}{IFN} \sum_{i,f,n} \frac{|x_{i,fn} - \hat{x}_{i,fn}|^2}{|x_{i,fn}|^2} \text{ with } x_{i,fn} = \mathsf{STFT}[x_i(t)]$$

Probabilistic model

Inference

Experiments

Future work

Proposed approach

TF source model and time-domain convolutive mixture model.

Probabilistic model

Inference

Experiments

Future work

Proposed approach

TF source model and time-domain convolutive mixture model.

 $\psi_{fn}(t)$ is a Modified Discrete Cosine Transform (MDCT) atom.

Probabilistic model

Inference

Experiments

Future work

Probabilistic model

Inference

Experiments

Future work

troduction	Probabilistic model	Inference	Experiments	Future work
000000	● ○○	0000	000	0

Probabilistic modeling with latent variables

- ▶ Latent source random variables: $\mathbf{s} = \{s_{j,fn} \in \mathbb{R}\}_{j,f,n}$;
- Observed random variables: $\mathbf{x} = \{x_i(t) \in \mathbb{R}\}_{i,t}$.

Defining the probabilistic model

conditional distribution of ${\bf x}$ given ${\bf s}$

$$p(\mathbf{x}, \mathbf{s}; \boldsymbol{\theta}) = \underbrace{p(\mathbf{s}; \boldsymbol{\theta})}_{p(\mathbf{x}|\mathbf{s}; \boldsymbol{\theta})} \times p(\mathbf{x}|\mathbf{s}; \boldsymbol{\theta})$$

prior distribution of ${\bf s}$

where θ is a set of deterministic parameters.

- What prior knowledge do we have on the latent source variables?
- How are the data generated from the latent unobserved variables?

 Introduction
 Probabilistic model
 Inference
 Experiments
 Future work

 0000000
 0●0
 0000
 000
 000
 0

Prior distribution of the latent variables

Gaussian source model based on Non-negative Matrix Factorization [1].

[1] C. Févotte, N. Bertin, J.-L. Durrieu. "Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis". *Neural computation*, 2009.

Introduction	Probabilistic model	Inference	Experiments	Future work
0000000	000	0000	000	0

Conditional distribution of x given s

Gaussian modeling error

$$x_i(t) = \sum_{j=1}^J [a_{ij} \star s_j](t) + b_i(t),$$

with
$$b_i(t) \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma_i^2)$$
 and $s_j(t) = \sum_{f=0}^{F-1} \sum_{n=0}^{N-1} s_{j,fn} \psi_{fn}(t)$.

Conditional distribution

$$|\mathbf{x}_i(t)|\mathbf{s}; \boldsymbol{\theta} \sim \mathcal{N}\left(\sum_{j=1}^J \sum_{f=0}^{F-1} \sum_{n=0}^{N-1} s_{j,fn}[a_{ij} \star \psi_{fn}](t), \sigma_i^2\right)$$

Probabilistic model

Inference

Experiments

Future work

Outline

Inference

Experiments

Future work

Probabilistic model

Inference

Experiments

Future work

Statistical inference

We are interested in the posterior distribution $p(\mathbf{s}|\mathbf{x}; \boldsymbol{\theta})$,

with
$$\boldsymbol{\theta} = \left\{ \{ \mathbf{W}_j, \mathbf{H}_j \}_j, \{ a_{ij}(t) \}_{i,j,t}, \{ \sigma_i^2 \}_i \right\}.$$

Source and parameter estimation

Source estimation according to the posterior mean:

$$\hat{\mathbf{s}} = \mathbb{E}_{\mathbf{s}|\mathbf{x}; \boldsymbol{\theta}^{\star}}[\mathbf{s}].$$

Maximum likelihood estimation of the parameters:

$$\boldsymbol{ heta}^{\star} = \arg \max_{\boldsymbol{ heta}} p(\mathbf{x}; \boldsymbol{ heta}).$$

The posterior distribution is Gaussian but with a high-dimensional full covariance matrix \rightarrow **Variational inference**.

Probabilistic model

Inference

Experiments

Future work

Variational inference

- We want to find $q \in \mathcal{F}$ which approximates $p(\mathbf{s}|\mathbf{x}; \theta)$.
- Taking the KL divergence as a measure of fit, we can show that:

$$KL(q||p(\mathbf{s}|\mathbf{x};\boldsymbol{\theta})) = \underbrace{\ln p(\mathbf{x};\boldsymbol{\theta})}_{\text{Log-likelihood}} - \underbrace{\mathcal{L}(q;\boldsymbol{\theta})}_{\text{Variational Free Energy}}, \quad (3)$$

where
$$\mathcal{L}(q; \theta) = \left\langle \ln\left(\frac{p(\mathbf{x}, \mathbf{s}; \theta)}{q(\mathbf{s})}\right) \right\rangle_q$$
 and $\langle f(\mathbf{s}) \rangle_q = \int f(\mathbf{s}) q(\mathbf{s}) d\mathbf{s}$.

Variational Expectation-Maximization algorithm:

► **E-step**:
$$q^{\star} = \arg\min_{q \in \mathcal{F}} KL(q||p(\mathbf{s}|\mathbf{x}; \boldsymbol{\theta}_{old})) = \arg\max_{q \in \mathcal{F}} L(q; \boldsymbol{\theta}_{old});$$

• **M-step**:
$$\theta_{\text{new}} = \arg \max_{\theta} \mathcal{L}(q^*; \theta).$$

source estimate

Introduction	
0000000	

Probabilistic model

Inference ○○○● Experiments

Future work

M-Step

Maximize (or only increase) the variational free energy w.r.t the θ .

NMF parameters

Compute an NMF with the Itakura-Saito divergence on:

$$\left\langle s_{j,fn}^{2}\right\rangle _{q^{\star}}=m_{j,fn}^{2}+\gamma_{j,fn},$$

 \rightarrow standard multiplicative update rules.

Mixing filters

Solve a Toeplitz system of equations for $\mathbf{a}_{ij} = [a_{ij}(0), ..., a_{ij}(L_a - 1)]^T$.

Noise variance

$$\sigma_i^2 = \frac{1}{T} \sum_{t=0}^{T-1} \left\langle \left(x_i(t) - \sum_{j=1}^J [a_{ij} \star s_j](t) \right)^2 \right\rangle_{q^*}$$

Probabilistic model

Inference

Experiments

Future work

Probabilistic model

Inference

Experiments

Future work

Introduction	Probabilistic model	Inference	Experiments	Future work
0000000	000	0000	•00	0
_	•			

Experiments

- Dataset:
 - ▶ 5 reverberation times: 32, 64, 128, 256, 512 ms;
 - 5 \times 8 stereo mixtures created with synthetic room impulse responses;
 - Number of sources: 3 to 5;
 - Mixture length: 12 to 28 seconds.
- Baseline approach [2]
 - Gaussian NMF-based source model with STFT approximation of the convolutive mixing process.
- Oracle initialization:
 - Parameters are initialized using the true source signals and mixing filters.
- Performance measure:
 - Signal-to-Distortion Ratio (SDR).

[2] A. Ozerov and C. Févotte. "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation". *IEEE Transactions on Audio, Speech and Language Processing*, 2010.

 Introduction
 Probabilistic model
 Inference
 Experiments
 Future work

 0000000
 000
 000
 0●0
 0
 0

Oracle source separation results

STFT and MDCT analysis/synthesis window length: 128 ms.

Other standard energy ratios (ISR, SIR, SAR) are in the paper.

Probabilistic model

Inference

Semi-blind audio example

Room impulse responses from the RWCP database: recorded in a real room (reverberation time of 470 ms).

Semi-blind setting: The mixing filters are known and fixed while all the other parameters are blindly estimated.

Stereo mixture: 🧕

	Original	Baseline	Proposed
Drums	0	0	0
Guitar 1	0	0	0
Guitar 2	0	0	۲
Voice	0	0	۲
Bass	0	0	0

Musical excerpt from "Ana" by Vieux Farka Toure. MTG MASS database.

Probabilistic model

Inference

Experiments

Future work

Outline

Probabilistic model

Inference

Experiments

Future work

Introduction	Probabilistic model	Inference	Experiments	Future work
0000000	000	0000	000	•

Future work

- Multi-resolution time-frequency source modeling;
- Probabilistic priors on the mixing filters in the time-domain;

Blind source separation method.

Thank you

More audio examples and Matlab code available at: https://perso.telecom-paristech.fr/leglaive/