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Introduction



Multichannel speech enhancement

noisy mixture

signal

clean 

speech signal

Semi-supervised approach:

� Training from clean speech signals only.

� Free of generalization issues regarding the noisy recording

environment.

We want the method to be speaker-independent.
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Speech enhancement as a source separation problem

In the short-term Fourier transform (STFT) domain, for all

(f , n) ∈ B = {0, ...,F − 1} × {0, ...,N − 1}, we observe:

xfn = sfn + bfn, (1)

. sfn ∈ CI is the clean speech signal.

. bfn ∈ CI is the noise signal.

. f is the frequency index and n the time-frame index.

. I is the number of microphones.

Objective

Separate the speech and noise signals from the

observed mixture signal.
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Multichannel local Gaussian model (Vincent et al. 2010; Duong et al. 2010)

Local Gaussian model: Independently for all (f , n) ∈ B,

sfn ∼ Nc(0,Σs,fn) and bfn ∼ Nc(0,Σb,fn). (2)

Covariance matrix model:

Σj,fn = vj ,fn × Rj,f , j ∈ {s, b}. (3)

vj ,fn is the short-term

power spectral density

Rj,f is the spatial

covariance matrix.
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Spectral modeling with non-negative matrix factorization (NMF)

NMF-based spectro-temporal model (Arberet et al. 2010):

vj ,fn = (WjHj)f ,n , j ∈ {s, b}, (4)

. Wj ∈ RF×Kj

+ is a dictionary matrix of spectral templates.

. Hj ∈ RKj×N
+ is the activation matrix.

. Kj is the rank of the factorization (usually Kj(F + N)� FN).
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Semi-supervised setting (Smaragdis et al. 2007)

. Training: Learn Ws from a dataset of clean speech signals.

min
Ws ∈RF×Ks

+

∑
(f ,n)∈B

dIS

(
|sfn|2, vs,fn = (WsHs)f ,n

)
, (5)

where dIS(·, ·) is the Itakura-Saito (IS) divergence (Févotte et al. 2009).

. Test: Estimate the remaining speech and noise model parameters from

the noisy mixture signal.

In this work, we explore the use of neural networks as an alternative to

this supervised NMF-based variance model.
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Deep generative speech model



Single-channel deep generative speech model (Bando et al. 2018)

Independently for all (f , n) ∈ B,

sfn | zn ∼ Nc

(
0, σ2

f (zn)
)
, with zn ∼ N (0, IL), (6)

and σ2
f : RL 7→ R+ corresponds to a neural network of parameters θs .
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How to learn the parameters θs of this generative neural network?
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Learning the model parameters with variational autoencoders

. Training dataset of STFT speech time frames: s = {sn ∈ CF}N−1
n=0 .

. Difficulty: Intractable likelihood p(s;θs) =

∫
p(s|z;θs)p(z)dz.

. Solution: Variational autoencoder (VAE) (Kingma and Welling 2014).

Taking ideas from variational inference, maximize a lower bound of

ln p(s;θs), which can be recast as:

min
θs

∑
(f ,n)∈B

Eq(zn|sn;φ)

[
dIS

(
|sfn|2 ;σ2

f (zn)
) ]
, (7)

where q (zn|sn;φ) is an approximation of p(zn|sn;θs) and is defined by

an “encoding network” of parameters φ (see paper for more details).
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NMF- vs VAE-based spectro-temporal speech modeling

NMF-based model

vs,fn = (WsHs)f ,n = (Ws)>f ,: (Hs):,n

. linear function of (Hs):,n ∈ RKs
+ .

. # trainable parameters = F×Ks .

. IS divergence minimization.

. Interpretability.

VAE-based model

vs,fn = σ2
f (zn)

. non-linear function of zn ∈ RL.

. # trainable parameters is free.

. IS divergence minimization.

. Lack of (direct) interpretability.
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Multichannel speech enhancement



Models for semi-supervised multichannel speech enhancement

Supervised multichannel speech model

sfn | zn ∼ Nc

(
0, σ2

f (zn)Rs,f

)
, zn ∼ N (0, IL), (8)

where σ2
f (·) was trained during the training stage.

Unsupervised multichannel noise model

bfn ∼ Nc

(
0, (WbHb)f ,n Rb,f

)
, (9)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

Mixture model

xfn =
√
gnsfn + bfn, (10)

where gn ∈ R+ is a gain parameter (Leglaive et al. 2018).
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Unsupervised model parameters estimation

Likelihood

xfn | zn ∼ Nc

(
0, gnσ

2
f (zn)Rs,f + (WbHb)f ,n Rb,f

)
. (11)

. Unsupervised model parameters to be estimated:

θu =
{

Wb,Hb,Rs,f ,Rb,f , g = [g0, ..., gN−1]>
}
.

. Intractable marginal likelihood:

p(xfn;θu) =

∫
p(xfn|zn;θu)p(zn)dzn. (12)

. Expectation-maximization (EM) algorithm.

Observed data:

x =
{

xfn ∈ CI
}

(f ,n)∈B

Latent data:

z =
{

zn ∈ RL
}N−1

n=0
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Monte Carlo EM algorithm and speech estimation

. E-Step. From the current value of the parameters θ?
u, compute:

Q(θu;θ?
u) = Ep(z|x;θ?

u ) [ln p(x, z;θu)]

≈ 1

R

R∑
r=1

ln p
(

x, z(r);θu
)
, (13)

where the samples
{

z(r)
}
r=1,...,R

are i.i.d. and asymptotically drawn

from p(z|x;θ?
u) using a Markov chain Monte Carlo method.

. M-Step.

θ?
u ← arg max

θu

Q(θu;θ?
u). (14)

Minimize-majorize approach similar to (Sawada et al. 2013).

. Posterior mean speech estimate with multichannel Wiener-like filtering.
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Experiments



Dataset

. Clean speech signals: TIMIT database.

. Noise signals: DEMAND database (domestic environment, nature,

office, indoor public spaces, street and transportation).

. Training:

. training set of TIMIT database;

. ∼ 4 hours of speech;

. 462 speakers.

. Test:

. 168 stereo noisy mixtures at 0 dB signal-to-noise ratio;

. Different speakers and sentences than in the training set.
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Semi-supervised baseline method (Sawada et al. 2013)

Supervised multichannel speech model

sfn ∼ Nc

(
0, (WsHs)f ,n Rs,f

)
, (15)

where Ws ∈ RF×Ks
+ is learned during the training stage.

Unsupervised multichannel noise model

bfn ∼ Nc

(
0, (WbHb)f ,n Rb,f

)
. (16)

Test time: Maximum-likelihood estimation of the unsupervised model

parameters and multichannel Wiener filtering.
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Results

Objective measures (the higher, the better)

. Signal-to-distortion ratio (SDR).

. Perceptual evaluation of speech quality (PESQ) measure.

. Short-time objective intelligibility (STOI) measure.

baseline

proposed

and
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Singing voice separation in a stereo mixture

. VAE model trained on speaking and not singing voice.

. Unsupervised noise model → flexibility.

Mixture Estimated voice Estimated accompaniment

Song: “Ana” by Vieux Farka Toure
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Conclusion



Conclusion

For a semi-supervised multichannel speech enhancement

application, VAE-based generative speech models are an

interesting alternative to supervised NMF models.

Limitations and future work:

. MCEM algorithm is slow (∼ 7× slower than the baseline method).

. Variational EM algorithm.

. Temporal modeling of the latent variables.
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Thank you for your attention

Audio examples and code:

https://sleglaive.github.io
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