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Introduction



Semi-supervised speech enhancement

noisy speech

signal

clean 

speech signal

Semi-supervised approach (Smaragdis et al. 2007):

� Training from clean speech signals only.

� Free of generalization issues regarding the noisy recording environment.

We also want the method to be speaker independent.
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Speech enhancement as a source separation problem
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0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

=

clean speech

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

+

noise

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

In the short-term Fourier transform (STFT) domain, we observe:

xfn = sfn + bfn, (1)

. sfn ∈ C is the clean speech signal.

. bfn ∈ C is the noise signal.

. (f , n) ∈ B = {0, ...,F − 1} × {0, ...,N − 1}.

. f is the frequency index and n the time-frame index.
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Non-stationary Gaussian source model (Pham and Garat 1997; Cardoso 2001)

Independently for all (f , n) ∈ B:

sfn ∼ Nc(0, vs,fn) ⊥ bfn ∼ Nc(0, vb,fn). (2)

Consequently, we also have:

xfn ∼ Nc (0, vs,fn + vb,fn) . (3)

Spectro-temporal variance modeling (Vincent et al. 2010; Vincent et al. 2014):

. structured sparsity penalties

(Févotte et al. 2006; Kowalski and Torrésani 2009)

. non-negative matrix factorization (NMF)

(Benaroya et al. 2003; Févotte et al. 2009; Ozerov et al. 2012)

. deep generative neural networks

(Bando et al. 2018)
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Deep generative speech model for speech enhancement

It was recently proposed to model the speech variance by a generative neural

network (variational autoencoder) (Bando et al. 2018).
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. single-microphone semi-supervised speech enhancement (Bando et al. 2018;

Leglaive et al. 2018; Leglaive et al. 2019b; Pariente et al. 2019).

. multi-microphone semi-supervised speech enhancement (Sekiguchi et al. 2018;

Leglaive et al. 2019a; Fontaine et al. 2019; Sekiguchi et al. 2019).
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Previous works only considered a feed-forward and fully-connected generative

neural network, thus neglecting speech temporal dynamic.

In this work,

. we propose a recurrent VAE speech model trained on clean speech signals;

. at test time, it is combined with an NMF noise model;

. we derive a variational expectation-maximization algorithm where the

pre-trained encoder of the VAE is fine-tuned from the noisy mixture signal;

. experiments show that the temporal dynamic induced over the estimated

speech signal improves the speech enhancement performance.
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Deep generative speech model



Deep generative speech model

. s = s0:N−1 = {sn ∈ CF}N−1
n=0 is a sequence of N STFT speech time frames.

. z = z0:N−1 = {zn ∈ RL}N−1
n=0 is a corresponding sequence of N latent random

vectors.

Deep generative speech model

Independently for all time frames, in its most general form, we have:

sn | z ∼ Nc (0, diag {vs,n(z)}) , with zn
i.i.d∼ N (0, I) , (4)

and where vs,n(z) is provided by a decoder/generative neural network.

Multiple choices can be made to define this neural network, leading to different

probabilistic graphical models.
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Feed-forward fully-connected neural network (FFNN)

Variance model Probabilistic graphical model

vs,n(z) = ϕFFNN
dec (zn;θdec)

Dense

(linear)

Dense

(tanh)

sn−1

zn−1

sn

zn

sn+1

zn+1

p(s, z;θdec) =
N−1∏
n=0

p(sn|zn;θdec)p(zn).

The speech STFT time frames are not only conditionally independent, but also

marginally independent: p(s;θdec) =
N−1∏
n=0

p(sn;θdec).
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Recurrent neural network (RNN)

Variance model Probabilistic graphical model

vs,n(z) = ϕRNN
dec,n(z0:n;θdec)

Dense

(linear)

RNN

sn−1

zn−1

sn

zn

sn+1

zn+1

p(s, z;θdec) =
N−1∏
n=0

p(sn|z0:n;θdec)p(zn),

The speech STFT time frames are not marginally independent anymore.
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Bidirectional recurrent neural network (BRNN)

Variance model Probabilistic graphical model

vs,n(z) = ϕBRNN
dec,n (z;θdec)

RNN RNN

Dense

(linear)

Recurrent 
connection

Feed-forward 
connection

sn−1

zn−1

sn

zn

sn+1

zn+1

p(s, z;θdec) =
N−1∏
n=0

p(sn|z;θdec)p(zn).

The speech STFT time frames are not marginally independent anymore.
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Learning the model parameters

Training dataset{
s(i) ∈ CF×N}I

i=1
: i.i.d sequences of N STFT speech time frames.

Maximum marginal likelihood

max
θdec

1

I

I∑
i=1

ln p
(

s(i);θdec

)
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Learning the model parameters

Training dataset

{s(i) ∈ CF×N}Ii=1: i.i.d sequences of N STFT speech time frames.

Maximum marginal likelihood

max
θdec

ln p (s;θdec)

Intractability issue

p(s;θdec) =

∫
p(s, z;θdec)dz

Solution

Variational inference (Jordan et al. 1999) + neural networks

= variational autoencoder (VAE) (Kingma and Welling 2014)
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Variational lower bound

Variational lower bound

Ls(θenc,θdec) = Eq(z|s;θenc) [ln p (s|z;θdec)]︸ ︷︷ ︸
reconstruction accuracy

−DKL (q(z|s;θenc) ‖ p(z))︸ ︷︷ ︸
regularization

. (5)

Problem #1

max
θdec

Ls(θenc,θdec)

where Ls(θenc,θdec) ≤ ln p(s;θdec).

Problem #2

max
θenc

Ls(θenc,θdec)

⇔
min
θenc

DKL

(
q(z|s;θenc) ‖ p(z|s;θdec)

)

q(z|s;θenc) is an approximation of the intractable posterior p(z|s;θdec), and it is

defined by an encoder/recognition network (Kingma and Welling 2014).
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Looking at posterior dependencies

BRNN

model
sn−1

zn−1

sn

zn

sn+1

zn+1

p(z|s;θdec) =
N−1∏
n=0

p(zn|z0:n−1, s0:N−1;θdec)

RNN

model
sn−1

zn−1

sn

zn

sn+1

zn+1

p(z|s;θdec) =
N−1∏
n=0

p(zn|z0:n−1, sn:N−1;θdec)

FFNN

model
sn−1

zn−1

sn

zn

sn+1

zn+1

p(z|s;θdec) =
N−1∏
n=0

p(zn|sn;θdec)
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Inference model and encoder network

BRNN
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Inference model and encoder network

BRNN

model
sn−1

zn−1

sn

zn

sn+1

zn+1

q(z|s;θenc) =
N−1∏
n=0

N
(

zn;µz,n, diag
{

vz,n

})
{µz,n, vz,n} = ϕBRNN

enc,n (z0:n−1, s0:N−1;θenc)

RNN

model
sn−1

zn−1

sn

zn

sn+1

zn+1

q(z|s;θenc) =
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n=0
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enc,n(z0:n−1, sn:N−1;θenc)
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model
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sn+1

zn+1
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(

zn;µz,n, diag
{

vz,n

})
{µz,n, vz,n} = ϕFFNN

enc (sn;θenc)
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Training

With this inference model defined, the variational lower bound is completely

specified and it can be optimized using gradient-ascent based algorithms.

We used around 25 hours of clean speech data, from the Wall Street Journal

(WSJ0) dataset.
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Semi-supervised speech enhancement



Models for semi-supervised speech enhancement

Pre-trained deep generative speech model

sfn | z ∼ Nc (0, vs,fn(z)) , zn
i.i.d∼ N (0, I), (6)

where vs,fn is the decoder neural network (FFNN, RNN or BRNN) whose pa-

rameters were learned during the training phase.

NMF-based noise model

bfn ∼ Nc

(
0, (WbHb)f ,n

)
, (7)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

Likelihood

xfn | z ∼ Nc

(
0, gnvs,fn(z) + (WbHb)f ,n

)
, (8)

where gn ∈ R+ is a gain parameter (Leglaive et al. 2018).
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Speech estimation with Wiener-like filtering

Wiener-like filtering

ŝfn = Ep(sfn|xfn;φ)[sfn] = Ep(z|x;φ)

[ √
gnvs,fn(z)

gnvs,fn(z) + (WbHb)f ,n

]
xfn. (9)

Two problems:

1. We need to estimate the remaining unknown model parameters:

φ = {g0, ..., gN−1,Wb,Hb} ,

but the marginal likelihood p(x;φ) is intractable.

2. We need to find an approximation to the intractable posterior p(z|x;φ).
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ŝfn = Ep(sfn|xfn;φ)[sfn] = Ep(z|x;φ)

[ √
gnvs,fn(z)

gnvs,fn(z) + (WbHb)f ,n

]
xfn. (9)

Two problems:

1. We need to estimate the remaining unknown model parameters:

φ = {g0, ..., gN−1,Wb,Hb} ,

but the marginal likelihood p(x;φ) is intractable.

2. We need to find an approximation to the intractable posterior p(z|x;φ).

17



Proposed variational EM algorithm

Variational lower bound at test time

Lx(θenc,φ) = Eq(z|x;θenc) [ln p(x|z;φ)]− DKL

(
q(z|x;θenc) ‖ p(z)

)
, (10)

where q(z|x;θenc) corresponds to the pre-trained inference model from the

training phase, but now the encoder takes noisy speech as input.

Alternate maximization with respect to θenc (E-Step) and φ (M-Step).
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Temporal dynamic

Wiener-like filtering

ŝfn = Ep(z|x;φ)

[ √
gnvs,fn(z)

gnvs,fn(z) + (WbHb)f ,n

]
xfn

≈ Eq(z|x;θenc)

[ √
gnvs,fn(z)

gnvs,fn(z) + (WbHb)f ,n

]
xfn. (11)

The expectation is intractable, so it is approximated by an empirical average

using samples drawn from:

q(z|x;θenc) =
N−1∏
n=0

q(zn|z0:n−1, x;θenc). (12)

For the RNN and BRNN generative models, this sampling is done recursively.

There is a temporal dynamic that is propagated from the latent vectors to the

estimated speech signal, through the expectation in (11).

19



Alternative E-steps

Monte Carlo E-Step

For the FFNN generative model only, a Markov chain Monte Carlo method

was used to sample from the intractable posterior p(z|x;φ) (Bando et al. 2018;

Leglaive et al. 2018).

“Point-estimate” E-Step

In (Kameoka et al. 2019), it was proposed to only rely on a “point estimate” of the

latent variables, based on the maximum a posteriori (MAP):

z? = arg max
z

{
p(z|x;φ) ∝ p(x|z;φ)p(z)

}
,

which can be obtained with gradient-based optimization techniques.
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Experiments



Experimental setting

Dataset:

. About 1.5 hours of noisy speech @ 16 kHz using the WSJ0 (unseen speakers)

and QUT-NOISE datasets.

. Noise types: {”café”, ”home”, ”street”, ”car”}.

. Signal-to-noise ratios (SNRs): {-5, 0, 5} dB.

Performance measures (higher is better):

. scale-invariant signal-to-distortion ratio (SI-SDR) in dB

. perceptual evaluation of speech quality (PESQ) (between -0.5 and 4.5)

. extended short-time objective intelligibility (ESTOI) (between 0 and 1)

Methods:

. Monte Carlo EM MCEM - FFNN

. “Point-estimate” EM PEEM - {FFNN, RNN, BRNN}

. Proposed variational EM VEM - {FFNN, RNN, BRNN}
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Results

. For the FFNN generative model, the MCEM algorithm gives the best results.
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Results

. For the FFNN generative model, the MCEM algorithm gives the best results.

. The RNN model outperforms the FFNN model.

. The VEM algorithm outperforms the PEEM algorithm.
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Results

. For the FFNN generative model, the MCEM algorithm gives the best results.

. The RNN model outperforms the FFNN model.

. The VEM algorithm outperforms the PEEM algorithm.

. The BRNN model does not perform significantly better than the RNN model.
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Conclusion

. We combined a recurrent VAE with an NMF noise model for

semi-supervised speech enhancement.

. The inference model (encoder network) should be carefully designed in

order to preserve posterior temporal dependencies between the latent

variables.

. The temporal dynamic induced over the estimated speech signal is

beneficial in terms of speech enhancement results.

Audio examples and code:

https://sleglaive.github.io/demo-icassp2020.html
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