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Introduction



Speech enhancement

noisy mixture signal clean speech signal
speech enhancement
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> Preprocessing step for various speech information retrieval tasks (e.g.
automatic speech recognition, voice activity detection, etc.). 5



Speech enhancement as a source separation problem

In the short-term Fourier transform (STFT) domain, for all
(f,n)eB=A{0,...,F —1} x{0,..., N — 1}, we observe:

Xfn = Sfn + b, (1)

> s € Cis the clean speech signal.
> bg, € C is the noise signal.

> f is the frequency index and n the time-frame index.

Objective: Separate the speech and noise signals from the observed
mixture signal (under-determined problem).



Variance modeling with non-negative matrix factorization (NMF)

From [1], independently for all (f, n) € B:

i ~ Ne (0, (WeH)¢ , ), 2)

> W, € RiXKS is a dictionary matrix of spectral templates.
> Hs € RfXN is the activation matrix.
> Ks is the rank of the factorization (usually Ks(F + N) < FN).
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[1] C. Févotte, N. Bertin and J. L. Durrieu, " Nonnegative matrix factorization with the Itakura-Saito divergence: With
application to music analysis”, Neural computation, 2009.



Supervised NMF

dictionary activations
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> Supervised setting:
> W is learned on a dataset of clean speech signals.

> Hs is estimated from the noisy mixture signal.

> Pros and cons:
> Easy to interpret.
> Linear variance model E[|sm|?] = (WsHs), , = w;:fhs,,,.
> Limited number of trainable parameters.



In this work...

. we explore the use of neural networks as an alternative to this
supervised NMF-based variance model.



Model



Speech variance modeling with neural networks

From [2, 3], independently for all (f, n) € B:
nNN(O,IL); (3)
St | 20 ~ Ne(0, 07 (20)), (4)

> z, € RL is a latent random vector with L < F.

> fT% : R — R, is a non-linear function parametrized by 6.
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Generative network
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[2] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, Proc. of ICLR, 2014.
[3] Y. Bando et al., “Statistical speech enhancement based on probabilistic integration of variational autoencoder and 7
non-negative matrix factorization”, Proc. of IEEE ICASSP, 2018.



Noise and mixture models

> Unsupervised noise model: Independently for all (f,n) € B,
bin ~ N (0, (WsH5);., ) - (5)

where W, € RiXKb and Hp € Rf"XN.



Noise and mixture models

> Unsupervised noise model: Independently for all (f,n) € B,
bin ~ N (0, (WsH5);., ) - (5)

where W, € RiXKb and Hp € Rf"XN.

> Mixture model: For all (f,n) € B,
Xfn = @sfn + bfn; (6)

where g, € R, is a gain parameter.



Noise and mixture models

> Unsupervised noise model: Independently for all (f,n) € B,
bin ~ N (0, (WsH5);., ) - (5)

where W, € RiXKb and Hp € Rf"XN.

> Mixture model: For all (f,n) € B,
Xfn = \/g>nsfn + bfn; (6)

where g, € R, is a gain parameter.

> Conditional mixture distribution:

in | 2~ Ne (0. 8:03(za) + (WiHs)r ) ™)



Inference



Parameters estimation

> For now, we assume that the speech parameters 6. have been learned
during a training phase.

> Unsupervised model parameters:

0, — {wb eROK H, e RN g = [go,...gn1]" € Rﬂ}

> Observed data: x = {xf € C}(r n)ep

Direct maximum likelihood estimation is intractable




Parameters estimation

> For now, we assume that the speech parameters 6. have been learned
during a training phase.

> Unsupervised model parameters:

0, — {wb eROK H, e RN g = [go,...gn1]" € M}

> Observed data: x = {xf € C}(r n)ep

Direct maximum likelihood estimation is intractable

> Latent data: z = {z, ¢ R:}N 1

> Expectation-maximization (EM) algorithm.



Monte Carlo EM algorithm

> E-Step. From the current value of the parameters 6}, compute:

Q(eu; 0:) = TF-‘:p(z\x:é)s.el‘,) [In P(X, z; 0, eu)]

10



Monte Carlo EM algorithm

> E-Step. From the current value of the parameters 6}, compute:

Q(eu; 0;) = TFjp(z\x:(—)s.19[,) [In P(X, z; 0, OU)]

R
~ %ZInp(x,zm;Os,Ou) ) (8)
r=1

where the samples {z(r)} are asymptotically drawn from

r=1,...,R
p(z|x; 85, 07) using a Markov chain Monte Carlo method.

10



Monte Carlo EM algorithm

> E-Step. From the current value of the parameters 6}, compute:

Q(04;07) =1E,  x0.0:) [Inp(x,2;05,0,)]

~ %ZInp(x,zm;Os,Ou) ) (8)
r=1

where the samples {z(r)} are asymptotically drawn from

r=1,...,R
p(z|x; 85, 07) using a Markov chain Monte Carlo method.

> M-Step.
07 < argmax Q(6,;0}), (9)
0y

with 8, = {H,, GRKI’XN W, ERFXKbagER }-
10



Speech estimation

Let S5 = \/8nSfm be the scaled speech STFT coefficients.

Posterior mean estimation

For all (f,n) € B,

St = Ep (s lxii04,0,) 5]

g,,U%(z,,) (10)

— By i a
p(zn|%n;0s,04) gno'%(zn) + (Wbe)f,n ’

Intractable expectation — Markov chain Monte Carlo.
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Training the generative model with
variational autoencoders



Problem setting

> Training dataset of STFT speech time frames: s = {s, € CF} N1

> Generative model (reminder): Independently for all (f,n) € B:
n~N(0,1L);
st | Zn ~ N2(0,03(zn)),
where z, € Rt and in the following z = {z,,}N"_l.

> Problem: Learn the parameters 6 of this generative model (weights
and biases of the neural network).

> Maximum likelihood is intractable — variational autoencoders [2].

[2] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, Proc. of ICLR, 2014. 12



Variational inference

> Find g(z | s; ¢) which approximates p(z | s; 6s).

13



Variational inference

> Find g(z | s; ¢) which approximates p(z | s; 6s).

> Kullback-Leibler divergence as a measure of fit:

Dre(a(z] 5:9) || plz | 5:65)) = Inp(si6c) = £(#.6s),  (11)

where

L(¢,0s) = E 50 [Inpls|z0:)] —Dri(q(z|s: )| p(z). (12)

Reconstruction accuracy Regularization

> We would like to maximize L£(¢, 8s) with respect to both ¢ and ;.

> We need to define g(z | s; ¢).

13



Variational distribution

Independently for all n € {0, ..., Ny, — 1} and [ € {0,...,L — 1}:

(za)r [ 50 ~ N (s (150]°2) .67 (Is0l2) ), (13)
> © denotes element-wise exponentiation;

> iy F‘ii — R and 5/2 : ]Fi — R are non-linear functions
parametrized by ¢.
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Variational free energy

L(0s,0)< ;)Z wnisna) |dis (Isml”: 7F(zn) ) |
L
P

Ner 2

> [ (%)~ ()" 2 ()
(14)

where dis(x;y) = x/y —In(x/y) — 1 is the Itakura-Saito (IS) divergence.

> Intractable expectation approximated by a sample average
(“reparametrization trick”).

> Differentiable with respect to both 85 and ¢ (backpropagation).

> Optimized using gradient-ascent-based algorithm.

15



Experiments



> Clean speech signals: TIMIT database ).

> Noise signals: DEMAND database (domestic environment, nature,
office, indoor public spaces, street and transportation) ).

> Training:
> training set of TIMIT database;
> ~ 4 hours of speech;
> 462 speakers.

> Testing:
> 168 noisy mixtures at 0 dB signal-to-noise ratio;
> 1 sentence/speaker in the test set of TIMIT.

16



Semi-supervised NMF baseline

> Independently for all (f, n) € B:

st ~ N¢(0, (WsHs)f’,,) and b, N./\/’C(O,(Wbe)ﬂn).

> Training: From the observed clean speech signals

min Z d/5<]s,c,, )f’n).

W.eREX, HoeR XY (Tl

> Inference: From the observed mixture signal xs = s + b,

Ksx N miFnXK Kp Z dls(|an W H +Wbe) )
HoeRIS N, W, eRL ", HyeRD ™Y ey

(WSHS)f,n
(WSHS + Wbe)f,n

> Speech reconstruction: 55 = Xfn

17



Fully-supervised deep-learning reference method

> Fully-supervised deep-learning approach proposed in [4].

> A deep neural network is trained to map noisy speech log-power
spectrograms to clean speech log-power spectrograms.

> Trained with more that 100 different noise types — effective in

handling unseen noise types.

[4] Y. Xu et al., “A regression approach to speech enhancement based on deep neural networks”, |IEEE Transactions on
Audio, Speech and Language Processing, 2015.
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> The enhanced speech quality is evaluated in terms of:

> Signal-to-distortion ratio (SDR) in decibels (dB).

> Perceptual evaluation of speech quality (PESQ) measure in
between —0.5 and 4.5.

> The higher, the better.

> Different values for the latent dimension L and speech NMF rank Ki:

8,16,32,64 or 128.

19



Experimental results (SDR)

Median value indicated above each boxplot.
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Experimental results (PESQ)

Median value indicated above each boxplot.
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Musical audio example

> All models have been trained on speech (not singing voice).
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Conclusion




Conclusion

Variational autoencoders are an interesting alternative to
supervised NMF models.

Some perspectives:

> Monte Carlo EM is slow — variational inference;
> Temporal model on the latent variables;
> Multi-microphone extension;

> Uncertainty propagation for speech information retrieval.
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Thank you

Audio examples and code available online:

https://sleglaive.github.io


https://sleglaive.github.io
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