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Introduction



Speech enhancement

...

noisy mixture signal clean speech signal
speech enhancement

. Preprocessing step for various speech information retrieval tasks (e.g.

automatic speech recognition, voice activity detection, etc.). 2



Speech enhancement as a source separation problem

In the short-term Fourier transform (STFT) domain, for all

(f , n) ∈ B = {0, ...,F − 1} × {0, ...,N − 1}, we observe:

xfn = sfn + bfn, (1)

. sfn ∈ C is the clean speech signal.

. bfn ∈ C is the noise signal.

. f is the frequency index and n the time-frame index.

Objective: Separate the speech and noise signals from the observed

mixture signal (under-determined problem).
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Variance modeling with non-negative matrix factorization (NMF)

From [1], independently for all (f , n) ∈ B:

sfn ∼ Nc

(
0, (WsHs)f ,n

)
, (2)

. Ws ∈ RF×Ks
+ is a dictionary matrix of spectral templates.

. Hs ∈ RKs×N
+ is the activation matrix.

. Ks is the rank of the factorization (usually Ks(F + N)� FN).

[1] C. Févotte, N. Bertin and J. L. Durrieu, ”Nonnegative matrix factorization with the Itakura-Saito divergence: With

application to music analysis”, Neural computation, 2009. 4



Supervised NMF

. Supervised setting:

. Ws is learned on a dataset of clean speech signals.

. Hs is estimated from the noisy mixture signal.

. Pros and cons:

. Easy to interpret.

. Linear variance model E[|sfn|2] = (WsHs)f ,n = w>s,f hs,n.

. Limited number of trainable parameters.
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In this work...

... we explore the use of neural networks as an alternative to this

supervised NMF-based variance model.
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Model



Speech variance modeling with neural networks

From [2, 3], independently for all (f , n) ∈ B:

zn ∼ N (0, IL); (3)

sfn | zn ∼ Nc(0, σ2
f (zn)), (4)

. zn ∈ RL is a latent random vector with L� F .

. σ2
f : RL 7→ R+ is a non-linear function parametrized by θs .

[2] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, Proc. of ICLR, 2014.

[3] Y. Bando et al., “Statistical speech enhancement based on probabilistic integration of variational autoencoder and

non-negative matrix factorization”, Proc. of IEEE ICASSP, 2018.
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Noise and mixture models

. Unsupervised noise model: Independently for all (f , n) ∈ B,

bfn ∼ Nc

(
0, (WbHb)f ,n

)
, (5)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

. Mixture model: For all (f , n) ∈ B,

xfn =
√
gnsfn + bfn, (6)

where gn ∈ R+ is a gain parameter.

. Conditional mixture distribution:

xfn | zn ∼ Nc

(
0, gnσ

2
f (zn) + (WbHb)f ,n

)
. (7)

8



Noise and mixture models

. Unsupervised noise model: Independently for all (f , n) ∈ B,

bfn ∼ Nc

(
0, (WbHb)f ,n

)
, (5)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

. Mixture model: For all (f , n) ∈ B,

xfn =
√
gnsfn + bfn, (6)

where gn ∈ R+ is a gain parameter.

. Conditional mixture distribution:

xfn | zn ∼ Nc

(
0, gnσ

2
f (zn) + (WbHb)f ,n

)
. (7)

8



Noise and mixture models

. Unsupervised noise model: Independently for all (f , n) ∈ B,

bfn ∼ Nc

(
0, (WbHb)f ,n

)
, (5)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

. Mixture model: For all (f , n) ∈ B,

xfn =
√
gnsfn + bfn, (6)

where gn ∈ R+ is a gain parameter.

. Conditional mixture distribution:

xfn | zn ∼ Nc

(
0, gnσ

2
f (zn) + (WbHb)f ,n

)
. (7)

8



Inference



Parameters estimation

. For now, we assume that the speech parameters θs have been learned

during a training phase.

. Unsupervised model parameters:

θu =
{

Wb ∈ RF×Kb
+ , Hb ∈ RKb×N

+ , g = [g0, ..., gN−1]> ∈ RN
+

}
. Observed data: x = {xfn ∈ C}(f ,n)∈B

Direct maximum likelihood estimation is intractable

. Latent data: z = {zn ∈ RL}N−1
n=0

. Expectation-maximization (EM) algorithm.
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Monte Carlo EM algorithm

. E-Step. From the current value of the parameters θ?
u, compute:

Q(θu;θ?
u) = Ep(z|x;θs ,θ?

u ) [ln p(x, z;θs ,θu)]

≈ 1

R

R∑
r=1

ln p
(

x, z(r);θs ,θu
)
, (8)

where the samples
{

z(r)
}
r=1,...,R

are asymptotically drawn from

p(z|x;θs ,θ
?
u) using a Markov chain Monte Carlo method.

. M-Step.

θ?
u ← arg max

θu

Q(θu;θ?
u), (9)

with θu = {Hb ∈ RKb×N
+ , Wb ∈ RF×Kb

+ , g ∈ RN
+}.
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Speech estimation

Let s̃fn =
√
gnsfn be the scaled speech STFT coefficients.

Posterior mean estimation

For all (f , n) ∈ B,

ˆ̃sfn = Ep(s̃fn|xfn;θs ,θu)[s̃fn]

= Ep(zn|xn;θs ,θu)

[
gnσ

2
f (zn)

gnσ2
f (zn) + (WbHb)f ,n

]
xfn. (10)

Intractable expectation → Markov chain Monte Carlo.
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Training the generative model with

variational autoencoders



Problem setting

. Training dataset of STFT speech time frames: s = {sn ∈ CF}Ntr−1
n=0 .

. Generative model (reminder): Independently for all (f , n) ∈ B:

zn ∼ N (0, IL);

sfn | zn ∼ Nc(0, σ2
f (zn)),

where zn ∈ RL and in the following z = {zn}Ntr−1
n=0 .

. Problem: Learn the parameters θs of this generative model (weights

and biases of the neural network).

. Maximum likelihood is intractable → variational autoencoders [2].

[2] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, Proc. of ICLR, 2014. 12



Variational inference

. Find q(z | s;φ) which approximates p(z | s;θs).

. Kullback-Leibler divergence as a measure of fit:

DKL

(
q(z | s;φ) ‖ p(z | s;θs)

)
= ln p(s;θs)− L(φ,θs), (11)

where

L(φ,θs) = Eq(z|s;φ) [ln p (s | z;θs)]︸ ︷︷ ︸
Reconstruction accuracy

−DKL (q(z | s;φ) ‖ p(z))︸ ︷︷ ︸
Regularization

. (12)

. We would like to maximize L(φ,θs) with respect to both φ and θs .

. We need to define q(z | s;φ).
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Variational distribution

Independently for all n ∈ {0, ...,Ntr − 1} and l ∈ {0, ..., L− 1}:

(zn)l | sn ∼ N
(
µ̃l
(
|sn|�2

)
, σ̃2

l

(
|sn|�2

) )
, (13)

. � denotes element-wise exponentiation;

. µ̃l : RF
+ 7→ R and σ̃2

l : RF
+ 7→ R+ are non-linear functions

parametrized by φ.
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Variational free energy

L (θs ,φ)
c
= −

F−1∑
f =0

Ntr−1∑
n=0

Eq(zn|sn;φ)

[
dIS

(
|sfn|2 ;σ2

f (zn)
)]

+
1

2

L∑
l=1

Ntr−1∑
n=0

[
ln σ̃2

l

(
|sn|�2

)
− µ̃l

(
|sn|�2

)2
− σ̃2

l

(
|sn|�2

)]
,

(14)

where dIS(x ; y) = x/y − ln(x/y)− 1 is the Itakura-Saito (IS) divergence.

. Intractable expectation approximated by a sample average

(“reparametrization trick”).

. Differentiable with respect to both θs and φ (backpropagation).

. Optimized using gradient-ascent-based algorithm.
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Experiments



Dataset

. Clean speech signals: TIMIT database .

. Noise signals: DEMAND database (domestic environment, nature,

office, indoor public spaces, street and transportation) .

. Training:

. training set of TIMIT database;

. ∼ 4 hours of speech;

. 462 speakers.

. Testing:

. 168 noisy mixtures at 0 dB signal-to-noise ratio;

. 1 sentence/speaker in the test set of TIMIT.
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Semi-supervised NMF baseline

. Independently for all (f , n) ∈ B:

sfn ∼ Nc(0, (WsHs)f ,n) and bfn ∼ Nc(0, (WbHb)f ,n).

. Training: From the observed clean speech signals

min
Ws∈RF×Ks

+ ,Hs∈RKs×N
+

∑
(f ,n)∈B

dIS

(
|sfn|2; (WsHs)f ,n

)
.

. Inference: From the observed mixture signal xfn = sfn + bfn,

min
Hs∈RKs×N

+ ,Wb∈R
F×Kb
+ ,Hb∈R

Kb×N
+

∑
(f ,n)∈B

dIS

(
|xfn|2; (WsHs + WbHb)f ,n

)
.

. Speech reconstruction: ŝfn =
(WsHs)f ,n

(WsHs + WbHb)f ,n
xfn

17



Fully-supervised deep-learning reference method

. Fully-supervised deep-learning approach proposed in [4].

. A deep neural network is trained to map noisy speech log-power

spectrograms to clean speech log-power spectrograms.

. Trained with more that 100 different noise types → effective in

handling unseen noise types.

[4] Y. Xu et al., “A regression approach to speech enhancement based on deep neural networks”, IEEE Transactions on

Audio, Speech and Language Processing, 2015.
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Experiments

. The enhanced speech quality is evaluated in terms of:

. Signal-to-distortion ratio (SDR) in decibels (dB).

. Perceptual evaluation of speech quality (PESQ) measure in

between −0.5 and 4.5.

. The higher, the better.

. Different values for the latent dimension L and speech NMF rank Ks :

8, 16, 32, 64 or 128.

19



Experimental results (SDR)

Median value indicated above each boxplot.
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Experimental results (PESQ)

Median value indicated above each boxplot.
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Musical audio example

. All models have been trained on speech (not singing voice).
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Conclusion



Conclusion

Variational autoencoders are an interesting alternative to

supervised NMF models.

Some perspectives:

. Monte Carlo EM is slow → variational inference;

. Temporal model on the latent variables;

. Multi-microphone extension;

. Uncertainty propagation for speech information retrieval.
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Thank you

Audio examples and code available online:

https://sleglaive.github.io

23
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