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This document provides the proof of Proposition 1 in [1]. We recall that we want to solve the following optimization problem:

min
Hb∈R
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+
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⌢

C(Hb) +
⌣

C(Hb), (1)

with
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C(Hb) =
1

R

R

∑
r=1

∑
(f,n)∈B

ln (gnσ
2
f (z(r)n ) + (WbHb)f,n) ; (2)
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R
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∑
(f,n)∈B
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2

gnσ2
f (z

(r)
n ) + (WbHb)f,n

, (3)

and where B = {0, ..., F − 1} × {0, ...,N − 1}; xfn ∈ C; gn ∈ R+; z(r)n ∈ RL; σ2
f ∶ RL

↦ R+ and Wb ∈ RF×Kb
+ . Similarly as in [2], we use

the auxiliary function technique. Let us first recall its principle.

Definition 1 (Auxiliary function). The RKb×N
+ ×RKb×N

+ ↦ R+ mapping G(Hb, H̃b) is an auxiliary function to C(Hb) if and only if

∀(Hb, H̃b) ∈ RKb×N
+ ×RKb×N

+ , C(Hb) ≤ G(Hb, H̃b); (4)

∀Hb ∈ RKb×N
+ , C(Hb) = G(Hb,Hb). (5)

In other words, G(Hb, H̃b) is an upper bound of C(Hb) which is tight for H̃b =Hb. The original minimization problem can be replaced
by an alternate minimization of this upper bound; from an initial point H⋆

b we iterate:

H⋆

b ← argmin
Hb∈R

Kb×N
+

G(Hb,H
⋆

b). (6)

This procedure corresponds to the majorize-minimize (MM) algorithm [3], which by construction leads to a monotonic decrease of C(Hb).
Moreover, its convergence properties are the same as the ones of the expectation-maximization algorithm [4].

Now let us rewrite Proposition 1 of [1] in the following equivalent form:

Proposition 1 (Auxiliary function to C(Hb)).
The function G(Hb, H̃b) defined below is an auxiliary function to C(Hb).
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⌣
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with

⌢
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and where for all (f, n) ∈ B, k ∈ {1, ...,Kb}, wb,fk = (Wb)f,k, hb,kn = (Hb)k,n and h̃b,kn = (H̃b)k,n.



Proof. The proof will be done in two parts.

Concave part. We first prove that
⌢

G(Hb, H̃b) is an auxiliary function to
⌢

C(Hb). The condition
⌢

G(Hb,Hb) =
⌢

C(Hb) is trivially met.

Let hb,n ∈ RKb
+ (respectively h̃b,n ∈ RKb

+ ) denote the n-th column of Hb (respectively H̃b). The criterion
⌢

C(Hb) in equation (2) can be
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C
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where
⌢
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(r)

fn (hb,n) = ln (gnσ
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We prove that
⌢

C(Hb) ≤
⌢

G(Hb, H̃b) by majorizing each term
⌢

C
(r)

fn (hb,n). As the composition of a concave function and a linear function,
⌢
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fn (hb,n) is a concave function, so it can be majorized by its tangent (first order Taylor expansion) at an arbitrary point h̃b,n ∈ RKb
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where ∇ denotes the gradient operator. From (11), this upper bound can be further developed as follows:
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From (10), (12), (13) and (8), we have:
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which completes the first part of the proof.

Convex part. We now prove that
⌣

G(Hb, H̃b) is an auxiliary function to
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We prove that
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It is straightforward to verify that ∑Kb
k=0 φ

(r)
k,fn = 1. As the composition of a convex function and a linear function,
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function. Therefore, using Jensen’s inequality we have1:
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1Note that {φ(r)
k,fn
}Kb

k=0
are actually functions of h̃b,n.



Injecting (17) and (18) in (19),
⌣

G
(r)
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From (15), (19), (20) and (9), we have:

⌣
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1

R
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2
⌣

G
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which completes the second part of proof.

Finally, from (14) and (21):

C(Hb) =
⌢

C(Hb) +
⌣

C(Hb) ≤
⌢

G(Hb, H̃b) +
⌣

G(Hb, H̃b) = G(Hb, H̃b), (22)

which completes the proof.
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