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This document provides additional calculation details for the variational expectation-maximization (VEM) algorithm presented in [1].

1. REMINDER OF THE MODEL

Let us define:

> s;(t),t=0,...,Ls — 1,7 =1,..., J, the j-th source signal,

> ai;j(t),t=0,...,Le — 1,4 =1, ..., I, the mixing filter between source j and microphone i;

> yij(t) = [aij x s;](t),t =0,...,T — 1 withT = L, + L, — 1, the j-th source image seen by the i-th microphone.
The signal z;(t) recorded by the i-th microphone is modeled as:

J

zi(t) = > (1) +bi(t), M

j=1

where b;(t) ~ Nz (0, c2). The probability density function (pdf) of N is defined in Appendix A.
A source signal s;(t) is represented by a set of time-frequency (TF) synthesis coefficients {s;,» € K = C or R}, for (f,n) € B with
B={0,..,F —1} x {0,..,N — 1}:

2
50 =30(X, st ). @

where R(-) denotes the real part and 9, (t) is a TF synthesis atom that corresponds to the modified discrete cosine transform (MDCT) if
K = R (in this case ¢ = 2) and to the odd-frequency short-time Fourier transform (OFSTFT) if K = C (in this case ¢ = 1). From this model
a source image can be further written as follows:

2
yii (t) = ggce (Z(ﬁn)es Sj,fngu,fn(t)) ; 3)

where gij pn (t) = [aij * Yra](t).
The synthesis coefficients s; f,, are then modeled as centered and real Gaussian random variables if K = R (¢ = 2) or complex circularly
symmetric Gaussian random variables if K = C (¢ = 1):
Nr(0,v; 0) ifK=R;
Sj7fn Nﬂi( g f ) ) (4)
£(0,v5,¢n) IfK=C,

where the pdfs of these distributions are provided in Appendix A. The variances v; ¢, € R4 are finally structured by means of an NMF
model:
vj,rn = [W;iH;lfn, ©)

FxK

with W; e R, "7, Hj € Rfj “Nand K ; is the rank of the factorization.

2. VARIATIONAL INFERENCE

Let x = {z;(t)}:,; denote the set of observed mixture variables, s = {s; f» };.7,» the latent source variables and @ = {{a?};, {W,, H,},;}
the unknown model parameters. The mixing filters {a;;(t) }s,;,+ are assumed to be known. Let ¢ € F be a pdf over s, where F is a variational
family. Variational inference consists in optimizing a criterion called the variational free energy and defined as [2]:

L(g;0) = (In(p(x,s;0) / q(s)) ), (6)



where < - >, denotes the mathematical expectation taken with respect to g. We will use the VEM algorithm that consists in iterating two steps
until convergence: the E-step where we compute ¢* = arg max,. » £(g; 0*) and the M-step where we compute 8* = arg max, £(q*; 0).
In practice we will use the mean-field approximation by constraining the variational family F to the set of densities that factorize as g(s) =
II g @ #n(8j,rn). Under this approximation we can show that the pdf over s € s that maximizes the variational free energy satisfies [2]:

Ing*(s) = (Inp(x,5;0))q(s\5)s )

where = represents equality up to an additive constant and s\ s denotes the set of all latent variables but s.

2.1. Source estimate
Under the variational mean-field approximation, the estimate of the j-th source in the TF domain is given by:

8j.fn = (8j,fn)a- ®)
The time-domain signal §;(¢) is then reconstructed by inverse TF transform and the source image §;; () is obtained by convolution with the
corresponding mixing filter: §;;(¢t) = [as:; * §;](¢).
2.2. Complete-data log-likelihood

According to the model defined in the previous section, the complete-data log-likelihood In p(x,s;0) = Inp(x|s; 0) + Inp(s; @) can be
expressed as:
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2.3. E-step

Under the mean-field approximation, we can show that the densities g; s (s, f») Which maximize the variational free energy satisfy:
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where R(-) and (+) denote the real and imaginary parts respectively.

In the complex case (K = C) we see that g, (s, £») is the pdf of a complex Gaussian distribution which is not proper (see equation (29)
in Appendix A for the pdf of this distribution). It means that the real and imaginary parts of the source coefficients are a posteriori correlated
and have different variances. It the real case (K = R), as 3(s;,r) = 0 we see that g}, (s;,n) corresponds to a real Gaussian distribution.
We now need to identify the parameters of the variational distribution:

> 85 pn = (R(sjrn))ars
> 85 pn = (S(s5.rn))ar
> Y pn = ((R(85.0n) = 85 pn)") v
> Y pn = ((S(s5.n) = 85 pn) ")

?R'n_Arn(\'n_Az'n*
g SORi) = 50 S sign) =

e

Note that in the real case K = R, the optimal variational distribution is a real Gaussian which is only parametrized by 57 ¢, and ] ,,. From
equations (10) and (29), identifying the parameters of the variational distribution consists in solving the following system of equations:
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After calculation we obtain:
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We will now simplify equations (14) and (15). Let us define:
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We can show from equations (11)-(15) that the following three equalities hold:
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Using (18) and (20) for rewriting (14) and recognizing dj ¢, defined in (16) we obtain:
8.tn = 85 pn = Viopn (L= 05,50 ) 5 - 1)
Similarly, using (19) and (20) for rewriting (15) and recognizing d; ¢,, defined in (17) we obtain:
Sjurn = 85pn = Vo (L= 25, p0)dj, - (22)

We have to mention that updates (21) and (22) hold if the parameters are updated in turn. Finally, the first and second-order moments of this
variational distribution are given as follows:

> Mean: ‘§j7f’ﬂ = <8j7fn>ll = §;,fn + 7”§,Z7',fn;
. . A 2 .
> Variance: v, fn = (|Sj,fn — 8j,fn|")q = ’Y;,fn + VJZ‘,fn,
: P N 2
> Pseudo-variance: j,fn = ((Sj,n = 85.m) Ve = Vj.pn = Vi,fn + 200551/}, pu V5 -

2.4. Variational free energy

From (6), (9) and the E-step, the variational free energy can be written as follows:
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2.5. Preconditioned conjugate gradient method

We can easily show from the expression of the variational free energy in (23) that d§>fn as defined in (16) or (17) further satisfies the following

equality: d; }n

opposite direction of the derlvatlve dg } with a step size 'y; 3,”(1 05, fn) When the derivative is zero, it is clear that we achieve a fixed
point of the algorithm. Therefore, for the sake of computational efficiency, we will use the Preconditioned Conjugate Gradient (PCG) method
[3] instead of the coordinate-wise updates (21) and (22).

For the sake of conciseness, we will work with complex-valued vectors. More precisely we rely on Wirtinger calculus for computing the
generalized complex derivatives defined as follows [4]:

=90(—L(q";0))/ (85 5 fn) Therefore we clearly see from (21) and (22) that the update of st }n corresponds to going in the
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From equations (16) and (17) we have:

N J
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=1

Vj, fn — 9 +=0

Let us introduce the following notations:

> §=[8" +18'] € CN with §0) € R7FN the column vector of entries *§<"}n;
> d=[d" 4d'] € CFN with d") € RN the column vector of entries at)
(CJFN

jofns
> gi(t) € the column vector of entries gi;, £ (t);

> D the diagonal preconditioning matrix of size JF'N x JF N with entries:

(’Y'r,fn)71+(’y%,fn)71 ! 1 — 2
) O (A5 LS o ).
=1 t=0

1_pj,fn i (,bv],fn

The order of the coefficients indexed by j, f, n for constructing these vectors and this diagonal matrix does not matter as long as it is kept
identical. The PCG method is summarized in Algorithm 1.

Algorithm 1: PCG method for the E-step (update of 5; ¢r)

1: Initialize d from equation (26) and w = D d
2: while stopping criterion not reached do
3: Compute  the column vector of size JF' N and entries

wi L F N

a0 O DU S L pop sEpmempats) |
afn 3% =0 j'=1 0n/=0

4 p=(wd)/(w" k)

5 §+8— pw

6: Compute d from equation (26)

7: d,=D"'d

8 B=—(k"d,)/(w" k)

9

0

10: end while

2.6. M-step

The M-step consists in maximizing (or only increasing) £(g™; @) in (23) with respect to 6. Zeroing the derivative of this criterion with respect
to o2 leads to the following update:

1 T—1
ol =5 ) eilt). @7)
t=0

Up to an additive term which does not depend on the NMF parameters, we can recognize in equation (23) the Itakura-Saito (IS) divergence
[5] between the posterior mean of the source power spectrogram (| s, fn\ Yor = 185, n|? + vj n and vj f, = [W;H;]tr. Therefore the
source parameters are updated by computing an NMF on the matrix P € RFXN with entries [P lfn = [3j,n|?> + 7j,n using the IS
divergence. It can be done with the standard multiplicative update rules given in [5]



2.7. Summary of the VEM algorithm

In the complex case (K = C), the E-step corresponds to first updating p;, rn, 77, . and 7; z,, according to equations (11), (12) and (13)
respectively and then updating 3; . = 87 f,, + 18} f,, with the PCG method summarized in Algorithm 1. In the real case (K = R), one only
needs to compute 7; ¢,, and 87 ¢,, with the same updates. The E-step is summarized in Algorithm 2 for K = C and Algorithm 3 for K = R.
We clearly see that using the MDCT which is a real-valued TF transform allows us to reduce the computational load compared with the use

of the OFSTFT.

Algorithm 2: E-step for K =C,ie. ¢ =1

1: for all j, f,n do
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5: end for

6: Update {3;,rn = 3} y, + 18} tn }j,7,n With the PCG method (Algorithm 1)

Algorithm 3: E-step for K = R, i.e. ¢ =2

1: for all j, f,n do
A 1
T 2
Vi fn = Z p) Z Gijgn(t) +

s
i=1 ¢ t=0 .

-1

»

(95]

end for
: Update {55, fn = 87 ¢, }4,f,n With the PCG method (Algorithm 1)

A~

Algorithm 4: M-step

e;(t), with e; (t) defined in equation (24)

T
0
22 W;,H; = IS-NMF(P]') where [P]']fn = ‘gj,fn|2 + Vi fn
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A. GAUSSIAN PROBABILITY DISTRIBUTIONS

A.1. Real Gaussian distribution
Let Nz (=; 1, 02) denote the Gaussian distribution over a real-valued random variable (r.v.) z. Its pdf is given by:

exp <—M> . (28)

Ni(z;p,0%) = 252

2702

A.2. Complex Gaussian distribution

Let Ne(; p, poar s Py s O’iT, aﬁi) denote the Gaussian distribution over a complex-valued r.v. = x, + wx,. Its pdf is given by [4]:

1 exp | — 1 (zr — /vL:cT)Q + (z, — /v‘awq,)2 _ 2p(@r — pa, ) (T2 — fia,)
2M0 5, 05,7/ 1 — p? 2(1 - p?) 2 2 ’

oz, oz, 02,0z,

N(C(LU, P, ,Uzgc,,w, /’Ll‘m 02T7 O’il) -
(29)

where p = E[(@, — 1z, ) (@0 — 12,))/(00,02,) € [~1, 1],
The particular case N¢(z;p = 0, fia,., uwi,agr =0?/2, O'?Ei = ¢ /2) corresponds to the proper complex Gaussian distribution. It is
further written as NZ (z; 1, 0) where p = pz,. + ipte, and 0° = 202, = 207> . Its pdf is given by:

1 z—pl?
Ng(x;p,(rQ) = g exp (—l 2,u| ) . (30)

g

The complex Gaussian distribution is circularly symmetric if it is proper and p = 0.



