# Student's t Source and Mixing Models for Multichannel Audio Source Separation

Simon Leglaive

Inria Grenoble Rhône-Alpes, Perception Team

Bayes in Grenoble Seminar May 15, 2018

This work was carried out during my Ph.D. at Télécom ParisTech, with my Ph.D. advisors Roland Badeau and Gaël Richard.



# Introduction

Objective: Recover source signals from one or several mixtures.



Many applications:

- Biomedical signal processing (ECG, EEG, MEG, MRI, etc.);
- Astrophysics;
- Underwater acoustics;
- Audio signal processing;
- etc.

#### Audio source separation in everyday life



#### Audio source separation for karaoke



#### Audio source separation for music upmixing



## **Targeted scenario**

#### Under-determined and reverberant multichannel mixture.



A model aims to explain how are the observed data generated.



Time-frequency (TF) transforms provide meaningful representations.



Spectrograms computed from the short-term Fourier transform (STFT).









## Room impulse response (RIR) (1)



- Characterizes the source-to-microphone acoustic path.
- Reverberation time:
  - between 0.1 and 0.8 s for domestic/office rooms  $\blacktriangleleft\!\!\!\!$
  - up to a few seconds for concert halls  $\blacktriangleleft \!\!\!\! \vartheta$
  - 75 s for a Scottish oil storage tank (world record!) ◀

## Room impulse response (RIR) (2)



magnitude



#### Reverberant mixtures (1)

Convolutive mixing process in the time domain:



#### Reverberant mixtures (2)

Convolutive mixing process in the STFT domain:



## Proposed approach (1)

Time-domain mixture representation and time-frequency source representation.



## Proposed approach (2)

Time-domain convolutive mixture model

$$x_i(t) = \sum_{j=1}^{J} [a_{ij} \star \mathbf{s}_j](t).$$
(1)

Time-frequency source representation

$$s_{j}(t) = \sum_{(f,n)\in\mathcal{B}_{j}} s_{j,fn}\psi_{j,fn}(t), \qquad (2)$$

with  $\psi_{j,fn}(t) \in \mathbb{R}$  a (source-dependent) modified discrete cosine transform (MDCT) atom and  $\mathcal{B}_j = \{0, ..., F_j - 1\} \times \{0, ..., N_j - 1\}$ .

Remark: Source time-frequency coefficients are real-valued.

- 1. Deterministic time-domain mixing filters
- 2. Probabilistic time-domain mixing filters



# Deterministic time-domain mixing filters

#### Probabilistic modeling with latent variables

- Latent source random variables:  $\mathbf{s} = \{s_{j,fn} \in \mathbb{R}\}_{j,f,n}$ ;
- Observed random variables:  $\mathbf{x} = \{x_i(t) \in \mathbb{R}\}_{i,t}$ .

Defining the probabilistic model

$$p(\mathbf{x}, \mathbf{s}; \boldsymbol{\theta}) = p(\mathbf{s}; \boldsymbol{\theta}) \times p(\mathbf{x}|\mathbf{s}; \boldsymbol{\theta})$$

where  $\theta$  is a set of deterministic parameters.

- What prior knowledge do we have on the latent source variables?
- How are the data generated from the latent unobserved variables?

#### Source model

Gaussian source model based on non-negative matrix factorization (NMF) [1].

Independently for all sources and TF points:

$$s_{j,fn} \sim \mathcal{N}\left(0, (\mathbf{W}_{j}\mathbf{H}_{j})_{f,n}\right).$$



[1] C. Févotte, N. Bertin, J.-L. Durrieu. "Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis". *Neural computation*, 2009.

Independently for all microphones and time instants:

$$x_i(t) \mid \mathbf{s} \sim \sum_{j=1}^{J} [a_{ij} \star \mathbf{s}_j](t) + \mathcal{N}(0, \sigma_i^2),$$

where we recall that  $s_j(t) = \sum_{(f,n)\in\mathcal{B}_j} s_{j,fn}\psi_{j,fn}(t).$ 

#### **Posterior inference**

We are interested in the posterior distribution of the latent variables:

 $p(\mathbf{s}|\mathbf{x}; \boldsymbol{\theta}^{\star}),$ 

with  $\theta^*$  an estimate of  $\theta = \{\{\mathbf{W}_j, \mathbf{H}_j\}_j, \{a_{ij}(t)\}_{i,j,t}, \{\sigma_i^2\}_i\}.$ 

Maximum likelihood parameters estimation

$$\theta^{\star} = \arg \max_{\theta} p(\mathbf{x}; \theta).$$

The posterior distribution is Gaussian but with a high-dimensional full covariance matrix  $\rightarrow$  **Variational inference**.

• Find  $q(\mathbf{s}) \in \mathcal{F}$  which approximates  $p(\mathbf{s}|\mathbf{x}; \boldsymbol{\theta})$ .

- Find  $q(\mathbf{s}) \in \mathcal{F}$  which approximates  $p(\mathbf{s}|\mathbf{x}; \boldsymbol{\theta})$ .
- We take the Kullback-Leibler divergence as a measure of fit:

$$D_{KL}(q(\mathbf{s})||p(\mathbf{s}|\mathbf{x};\boldsymbol{\theta})) = \underbrace{\ln p(\mathbf{x};\boldsymbol{\theta})}_{\text{log-likelihood}} - \underbrace{\mathcal{L}(q;\boldsymbol{\theta})}_{\text{variational free energy}}, \quad (3)$$

where 
$$\mathcal{L}(q; \theta) = \left\langle \ln \left( \frac{p(\mathbf{x}, \mathbf{s}; \theta)}{q(\mathbf{s})} \right) \right\rangle_q$$
 and  $\langle f(\mathbf{s}) \rangle_q = \int f(\mathbf{s}) q(\mathbf{s}) d\mathbf{s}$ .

- Find  $q(\mathbf{s}) \in \mathcal{F}$  which approximates  $p(\mathbf{s}|\mathbf{x}; \boldsymbol{\theta})$ .
- We take the Kullback-Leibler divergence as a measure of fit:

$$D_{KL}(q(\mathbf{s})||p(\mathbf{s}|\mathbf{x};\boldsymbol{\theta})) = \underbrace{\ln p(\mathbf{x};\boldsymbol{\theta})}_{\text{log-likelihood}} - \underbrace{\mathcal{L}(q;\boldsymbol{\theta})}_{\text{variational free energy}}, \quad (3)$$

where 
$$\mathcal{L}(q; \theta) = \left\langle \ln\left(\frac{p(\mathbf{x}, \mathbf{s}; \theta)}{q(\mathbf{s})}\right) \right\rangle_q$$
 and  $\langle f(\mathbf{s}) \rangle_q = \int f(\mathbf{s}) q(\mathbf{s}) d\mathbf{s}$ .

- Variational expectation-maximization algorithm:
  - E-step:  $q^* = \underset{q \in \mathcal{F}}{\arg\min} D_{KL}(q(\mathbf{s})||p(\mathbf{s}|\mathbf{x}; \theta_{old})) = \underset{q \in \mathcal{F}}{\arg\max} \mathcal{L}(q; \theta_{old});$

• **M-step**: 
$$\theta_{new} = \arg \max_{\theta} \mathcal{L}(q^*; \theta).$$

 $\ensuremath{\mathcal{F}}$  is the set of probability density functions that factorize as:

$$q(\mathbf{s}) = \prod_{j=1}^{J} \prod_{(f,n)\in\mathcal{B}_j} q_{jfn}(s_{j,fn}).$$

 $\ensuremath{\mathcal{F}}$  is the set of probability density functions that factorize as:

$$q(\mathbf{s}) = \prod_{j=1}^{J} \prod_{(f,n)\in\mathcal{B}_j} q_{jfn}(s_{j,fn}).$$

Under the mean-field approximation we can show that:

$$q_{jfn}^{\star}(s_{j,fn}) = N(\hat{s}_{j,fn}, \gamma_{j,fn}).$$

**E-Step**: update the variational parameters. **Source estimate**: approximate posterior mean  $\hat{s}_{j,fn}$ . true posterior

mean field approximation

Maximize (or only increase) the variational free energy w.r.t the  $\theta$ . NMF parameters

$$\min_{\mathbf{W}_{j},\mathbf{H}_{j}\geq 0}\sum_{(f,n)\in\mathcal{B}_{j}}d_{IS}\left(\left\langle s_{j,fn}^{2}\right\rangle _{q^{\star}},\,(\mathbf{W}_{j}\mathbf{H}_{j})_{f,n}\right),$$

where  $d_{IS}(\cdot, \cdot)$  is the Itakura-Saito divergence.

 $\rightarrow$  standard multiplicative update rules [1].

Maximize (or only increase) the variational free energy w.r.t the  $\theta$ . NMF parameters

$$\min_{\mathbf{W}_{j},\mathbf{H}_{j}\geq 0}\sum_{(f,n)\in\mathcal{B}_{j}}d_{IS}\left(\left\langle s_{j,fn}^{2}\right\rangle _{q^{\star}},\,(\mathbf{W}_{j}\mathbf{H}_{j})_{f,n}\right),$$

where  $d_{IS}(\cdot, \cdot)$  is the Itakura-Saito divergence.

 $\rightarrow$  standard multiplicative update rules [1].

#### **Mixing filters**

Solve a Toeplitz system of equations for  $\mathbf{a}_{ij} = [a_{ij}(0), ..., a_{ij}(L_a - 1)]^{\top}$ .

Maximize (or only increase) the variational free energy w.r.t the  $\theta$ . NMF parameters

$$\min_{\mathbf{W}_{j},\mathbf{H}_{j}\geq 0}\sum_{(f,n)\in\mathcal{B}_{j}}d_{IS}\left(\left\langle s_{j,fn}^{2}\right\rangle _{q^{\star}},\,(\mathbf{W}_{j}\mathbf{H}_{j})_{f,n}\right),$$

where  $d_{IS}(\cdot, \cdot)$  is the Itakura-Saito divergence.

 $\rightarrow$  standard multiplicative update rules [1].

#### **Mixing filters**

Solve a Toeplitz system of equations for  $\mathbf{a}_{ij} = [a_{ij}(0), ..., a_{ij}(L_a - 1)]^{\top}$ .

Noise variance

$$\sigma_i^2 = \frac{1}{T} \sum_{t=0}^{T-1} \left\langle \left( x_i(t) - \sum_{j=1}^J [a_{ij} \star s_j](t) \right)^2 \right\rangle_{q^*}.$$

Semi-oracle setting: mixing filters are known and fixed.

Musical excerpt from "Ana" by Vieux Farka Toure:

|                           | Voice       | Guitar 1    | Guitar 2    | Drums       | Bass        |
|---------------------------|-------------|-------------|-------------|-------------|-------------|
| Original source (stereo)  | <b>(</b> )) | <b>(</b> 1) | <b>(</b> )) | <b>(</b> 1) | <b>(</b> () |
| Estimated source (stereo) | <b>(</b> )) | <b>(</b> 1) | <b>(</b> )) | <b>(</b> )) | <b>(</b> 1) |

## Estimating the mixing filters - an ill posed problem

• Observations: 
$$x_i(t) = \sum_{j=1}^{J} [a_{ij} \star s_j](t)$$
.

- Estimating both the source signals and mixing filters is an ill-posed problem.
- The estimated mixing filter contains some part of the voice signal.



# Probabilistic time-domain mixing filters

#### **Proposed approach**

Time-domain convolutive mixture model

$$x_i(t) = \sum_{j=1}^J [a_{ij} \star s_j](t).$$

Time-frequency source representation

$$s_j(t) = \sum_{(f,n)\in\mathcal{B}_j} s_{j,fn}\psi_{j,fn}(t).$$

Latent random variables

- Time-frequency source coefficients {*s<sub>j,fn</sub>*}*<sub>j,f,n</sub>*;
- Time-domain mixing filters  $\{a_{ij}(t)\}_{i,j,t}$ .

#### Student's t distribution

Student's *t* distribution:  $\mathcal{T}_{\alpha}(\mu, \sigma)$ 

- Shape:  $\alpha > 0$ ;
- Location:  $\mu \in \mathbb{R}$ ;
- Scale:  $\sigma > 0$ .



#### Scale mixture of Gaussians

$$z \sim \mathcal{T}_{lpha}(\mu, \sigma) \quad \Leftrightarrow egin{cases} z | v & \sim \mathcal{N}\left(\mu, v\sigma^2
ight) \ v & \sim \mathcal{IG}\left(rac{lpha}{2}, rac{lpha}{2}
ight) \end{cases}$$

#### Source model

Student's t source model based on NMF [2].

Independently for all sources and TF points:

$$s_{j,fn} \sim \mathcal{T}_{\alpha_{v}}\left(0, (\mathbf{W}_{j}\mathbf{H}_{j})_{f,n}^{\frac{1}{2}}\right).$$



#### Remark: Generalization of the previous Gaussian model.

<sup>[2]</sup> K. Yoshii, K. Itoyama and M. Goto, "Student's t nonnegative matrix factorization and positive semidefinite tensor factorization for single-channel audio source separation", *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 2016.

## Gaussian RIR model (1)



## Gaussian RIR model (1)



#### Gaussian model with exponential decay [3]

Independently for all microphones, sources and time instants:

$$a_{ij}(t) \sim \exp(-t/\tau) \mathcal{N}(0, \sigma_r^2),$$

where  $\tau$  is defined according to the reverberation time.

Theoretically valid only for late reverberation (diffuse sound field).

<sup>[3]</sup> J. D. Polack, "La transmission de l'énergie sonore dans les salles", Ph.D. dissertation, Université du Maine, 1988.

## Gaussian RIR model (2)



Gaussian model with exponential decay [3] Equivalently:

$$a_{ij}(t)/\exp(-t/\tau) \stackrel{i.i.d}{\sim} \mathcal{N}(0,\sigma_r^2),$$

where  $\tau$  is defined according to the reverberation time.

Theoretically valid only for late reverberation (diffuse sound field).

<sup>[3]</sup> J. D. Polack, "La transmission de l'énergie sonore dans les salles", Ph.D. dissertation, Université du Maine, 1988.

## Student's t RIR model

#### Distribution of the normalized RIR coefficients



- 624 RIRs from the MIRD database [4];
- Reverberation time equals 610 ms.

<sup>[4]</sup> E. Hadad, F. Heese, P. Vary, and S. Gannot, "Multichannel audio database in various acoustic environments", IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), 2014.

## Student's t RIR model

#### Distribution of the normalized RIR coefficients



- 624 RIRs from the MIRD database [4];
- Reverberation time equals 610 ms.

<sup>[4]</sup> E. Hadad, F. Heese, P. Vary, and S. Gannot, "Multichannel audio database in various acoustic environments", IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), 2014.

## Student's t RIR model

#### Distribution of the normalized RIR coefficients



- 624 RIRs from the MIRD database [4];
- Reverberation time equals 610 ms.

#### Student's t model with exponential decay

Independently for all microphones, sources and time instants:

$$a_{ij}(t) \sim \mathcal{T}_{lpha_u}(0,r(t)), \qquad r^2(t) = \sigma_r^2 \exp(-2t/ au).$$

<sup>[4]</sup> E. Hadad, F. Heese, P. Vary, and S. Gannot, "Multichannel audio database in various acoustic environments", IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), 2014.

#### **Bayesian network**



- z: set of all latent variables (empty circles);
- x: set of observations (shaded circles);
- $\theta$ : set of model parameters to be estimated (dots).

- Exact posterior inference is analytically intractable.
- Variational inference with mean-field approximation:

$$q(\mathbf{z}) = \prod_{z_k \in \mathbf{z}} q_k(z_k).$$

• Under this approximation we can show that:

$$\begin{split} q_{jfn}^{s}(s_{j,fn})^{*} &= N(\hat{s}_{j,fn}, \gamma_{j,fn}); \\ q_{ijt}^{a}(a_{ij}(t))^{*} &= N\left(\hat{a}_{ij}(t), \rho_{ij}(t)\right); \\ q_{jfn}^{v}(v_{j,fn})^{*} &= IG(\nu_{v}, \beta_{j,fn}); \\ q_{ijt}^{u}(u_{ij}(t))^{*} &= IG(\nu_{u}, d_{ij}(t)). \end{split}$$

 $\bullet~$  E-Step  $\rightarrow$  update all the variational parameters.

Maximize (or only increase) the variational free energy w.r.t  $\theta$ .

#### **NMF** parameters

$$\min_{\mathbf{W}_{j},\mathbf{H}_{j}\geq0}\sum_{(f,n)\in\mathcal{B}_{j}}d_{IS}\left(\left\langle v_{j,fn}^{-1}\right\rangle _{q^{\star}}\left\langle s_{j,fn}^{2}\right\rangle _{q^{\star}},\,(\mathbf{W}_{j}\mathbf{H}_{j})_{f,n}\right),$$

where  $d_{IS}(\cdot, \cdot)$  is the Itakura-Saito divergence.

 $\rightarrow$  multiplicative update rules [1].

#### Noise variance

 $\sigma_i^2$  is manually decreased along the iterations.



- Dataset:
  - 8 stereo mixtures created with RIRs from the MIRD database [4];
  - Reverberation times: 160, 360 and 610 ms;
  - Number of sources per mixture: 3 to 5;
  - Musical sources: drums, piano, bass, guitar, voice;
  - Duration: 12 to 28 seconds.
- Semi-blind scenario:
  - NMF dictionaries **W**<sub>j</sub> are pre-trained using the true source signals;
  - Reverberation time is assumed to be known;
  - All other parameters are blindly estimated.

## Model hyperparameters

How do we choose  $\alpha_v$ ,  $\alpha_u$  and the MDCT window length?

## Model hyperparameters

How do we choose  $\alpha_v$ ,  $\alpha_u$  and the MDCT window length?

Average performance using the mixtures with a reverberation time of 360 ms



**Remark**: MDCT window length is fixed to 64 ms.

## Model hyperparameters

How do we choose  $\alpha_v$ ,  $\alpha_u$  and the MDCT window length?

Average performance using the mixtures with a reverberation time of 360 ms



**Remark**: MDCT window length is fixed to 64 ms.

**Remark**:  $(\alpha_v, \alpha_u)$  is fixed to (100, 1).

#### **Reference methods**

- Ozerov et al. [5] Sawada et al. [6]:
  - Similar models:
    - Source model: STFT Gaussian NMF.
    - Convolutive mixture model: STFT approximate.
  - Different estimation algorithms.
- Our previous method with deterministic and unconstrained time-domain mixing filters.

[5] A. Ozerov, E. Vincent and F. Bimbot, "A general flexible framework for the handling of prior information in audio source separation", *IEEE Transactions on Audio, Speech, and Language Processing*, 2012.

[6] H. Sawada, H. Kameoka, S. Araki and N. Ueda, "Multichannel extensions of non-negative matrix factorization with complex-valued data". *IEEE Transactions on Audio, Speech, and Language Processing*, 2013.

#### Source separation results



#### Source separation results



#### Source separation results



#### Mixing filters: Influence of the prior





## Audio example (1)

- Separation of 3 sources from a stereo mixture ( $T_{60} = 610$  ms).
- All algorithms are run using oracle NMF dictionaries.

| source image                        | drums       | guitar      | bass        |
|-------------------------------------|-------------|-------------|-------------|
| original                            | <b>(</b> )) | <b>(</b> )) | <b>(</b> )) |
| Ozerov et al.                       | <b>(</b> )) | <b>(</b> )) |             |
| Sawada et al.                       | <b>(</b> )) | <b>(</b> )) | <b>(</b> )  |
| Gaussian - deterministic TD filters | <b>(</b> )) | <b>(</b> )) |             |
| Prop. w/o adapted TF window         | <b>(</b> )) | <b>(</b> )) | <b>(</b> )) |

Stereo mixture: 🖤

Song: "TV On" by Kismet. MTG MASS database.

## Audio example (2)

- Stereo mixture provided by Radio France (Edison 3D ANR project).
- Blind separation of voice and instrumental.



#### ))

Song: "C'est magnifique" by Ella Fitzgerald (Nice Jazz Festival 1972 - Recording: ORTF).

# Conclusion

Multichannel audio source separation with time-domain convolutive mixture model:

- Appropriate for highly reverberant mixtures;
- Necessary to have priors on the mixing filters;
- Multi-resolution source modeling.

#### Perspectives: supervised source model

$$(\mathbf{W}_{j,fn}) \mathcal{IG}(\frac{\alpha_{v}}{2}, \frac{\alpha_{v}}{2})$$

$$(\mathbf{W}_{j})_{f,:}$$

$$(\mathbf{H}_{j})_{:,n}$$

$$(f, n) \in \mathcal{B}_{j}$$

$$\mathcal{IG}(\frac{\alpha_{v}}{2}, \frac{\alpha_{v}}{2})$$

$$(\mathbf{W}_{j})_{f,n}$$

$$\mathcal{IG}(\frac{\alpha_{v}}{2}, \frac{\alpha_{v}}{2})$$

- Learn NMF dictionaries on an external dataset.
- What about neural networks?

#### Perspectives: supervised source model

Variational autoencoder as a generative source model.



 $\sigma_f^2(\cdot)$ : non-linear function parametrized by  $\theta_i^s \rightarrow$  neural network.

- Learning  $\theta_i^s$  is "easy" in the framework of variational autoencoders.
- The difficulty lies in the inference of  $\{\mathbf{z}_{j,n}\}_n$  when the source signal is not directly observed  $\rightarrow$  Markov chain Monte Carlo methods.

# Thank you

#### Audio examples and Matlab code available online:

https://sleglaive.github.io