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Introduction



Source separation

Objective: Recover source signals from one or several mixtures.

Many applications:

• Biomedical signal processing (ECG, EEG, MEG, MRI, etc.);

• Astrophysics;

• Underwater acoustics;

• Audio signal processing;

• etc.
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Audio source separation in everyday life

Ok Hooli. 

Send a message to...

Noisy mixture 

signal

Target speaker

separation

Automatic speech 

recognition

"Send a message to..."

...
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Audio source separation for karaoke

source separation

backing track

stereo mixture

voice
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Audio source separation for music upmixing

source separation

bass piano drums voice

stereo mixture

surround sound 

mixing

5.1 sound 

system

Use case of

the ANR project
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Targeted scenario

Under-determined and reverberant multichannel mixture.
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Model-based approach

A model aims to explain how are the observed data generated.

Source model Mixing 

model

Observed 

data
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Time-frequency source representation

Time-frequency (TF) transforms provide meaningful representations.
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Spectrograms computed from the short-term Fourier transform (STFT).
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Time-frequency transform
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Room impulse response (RIR) (1)

source signal room impulse response recorded signal

• Characterizes the source-to-microphone acoustic path.

• Reverberation time:

• between 0.1 and 0.8 s for domestic/office rooms

• up to a few seconds for concert halls

• 75 s for a Scottish oil storage tank (world record!)
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Room impulse response (RIR) (2)

magnitude

early contributions

direct path

early echoes

late reverberation

time
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Reverberant mixtures (1)

Convolutive mixing process in the time domain:

xi (t) =
J∑

j=1

[aij ? sj ](t)
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Reverberant mixtures (2)

Convolutive mixing process in the STFT domain:

xi ,fn≈
J∑

j=1

aij ,f sj ,fn
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Proposed approach (1)

Time-domain mixture representation and time-frequency source

representation.

16



Proposed approach (2)

Time-domain convolutive mixture model

xi (t) =
J∑

j=1

[aij ? sj ](t). (1)

Time-frequency source representation

sj(t) =
∑

(f ,n)∈Bj

sj ,fnψj ,fn(t), (2)

with ψj ,fn(t) ∈ R a (source-dependent) modified discrete cosine

transform (MDCT) atom and Bj = {0, ...,Fj − 1} × {0, ...,Nj − 1}.

Remark: Source time-frequency coefficients are real-valued.
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Outline

1. Deterministic time-domain mixing filters

2. Probabilistic time-domain mixing filters
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Deterministic time-domain mixing

filters



Probabilistic modeling with latent variables

• Latent source random variables: s = {sj ,fn ∈ R}j ,f ,n;

• Observed random variables: x = {xi (t) ∈ R}i ,t .

Defining the probabilistic model

p(x, s;θ) = p(s;θ) × p(x|s;θ)

where θ is a set of deterministic parameters.

• What prior knowledge do we have on the latent source variables?

• How are the data generated from the latent unobserved variables?
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Source model

Gaussian source model based on non-negative matrix factorization

(NMF) [1].

Independently for all sources and

TF points:

sj ,fn ∼ N (0, (WjHj)f ,n) .

[1] C. Févotte, N. Bertin, J.-L. Durrieu. ”Nonnegative matrix factorization with the Itakura-Saito divergence: With

application to music analysis”. Neural computation, 2009.
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Conditional mixture distribution

Independently for all microphones and time instants:

xi (t) | s ∼
J∑

j=1

[aij ? sj ](t) +N
(
0, σ2

i

)
,

where we recall that sj(t) =
∑

(f ,n)∈Bj
sj ,fnψj ,fn(t).
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Statistical inference

Posterior inference

We are interested in the posterior distribution of the latent variables:

p(s|x;θ?),

with θ? an estimate of θ =
{
{Wj ,Hj}j , {aij(t)}i ,j ,t , {σ2

i }i
}

.

Maximum likelihood parameters estimation

θ? = arg max
θ

p(x;θ).

The posterior distribution is Gaussian but with a high-dimensional full

covariance matrix → Variational inference.
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Variational inference

• Find q(s) ∈ F which approximates p(s|x;θ).

• We take the Kullback-Leibler divergence as a measure of fit:

DKL(q(s)||p(s|x;θ)) = ln p(x;θ)︸ ︷︷ ︸
log-likelihood

− L(q;θ)︸ ︷︷ ︸
variational free energy

, (3)

where L(q;θ) =
〈

ln
(
p(x,s;θ)
q(s)

)〉
q

and 〈f (s)〉q =
∫
f (s)q(s)ds.

• Variational expectation-maximization algorithm:

• E-step: q? = arg min
q∈F

DKL(q(s)||p(s|x;θold)) = arg max
q∈F

L(q;θold);

• M-step: θnew = arg max
θ

L(q?;θ).
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Mean-field approximation

F is the set of probability density functions

that factorize as:

q(s) =
J∏

j=1

∏
(f ,n)∈Bj

qjfn(sj ,fn).

true posterior

mean field 

approximation

Under the mean-field approximation we can show that:

q?jfn(sj ,fn) = N(ŝj ,fn, γj ,fn).

E-Step: update the variational parameters.

Source estimate: approximate posterior mean ŝj ,fn.
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M-Step

Maximize (or only increase) the variational free energy w.r.t the θ.

NMF parameters

min
Wj ,Hj≥0

∑
(f ,n)∈Bj

dIS

(〈
s2
j ,fn

〉
q?
, (WjHj)f ,n

)
,

where dIS(·, ·) is the Itakura-Saito divergence.

→ standard multiplicative update rules [1].

Mixing filters

Solve a Toeplitz system of equations for aij = [aij(0), ..., aij(La − 1)]>.

Noise variance

σ2
i =

1

T

T−1∑
t=0

〈xi (t)−
J∑

j=1

[aij ? sj ](t)

2〉
q?

.
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Semi-oracle audio source separation example

Semi-oracle setting: mixing filters are known and fixed.

Musical excerpt from “Ana” by Vieux Farka Toure:

Voice Guitar 1 Guitar 2 Drums Bass

Original source (stereo)

Estimated source (stereo)
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Estimating the mixing filters - an ill posed problem

• Observations: xi (t) =
J∑

j=1
[aij ? sj ](t).

• Estimating both the source signals and mixing filters is an ill-posed

problem.

• The estimated mixing filter contains some part of the voice signal.

True:
0 0.1 0.2 0.3 0.4 0.5 0.6

-0.04

-0.02

0
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0.04
estimated mixing filter

time (s)

am
p
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d
e

Estimated:

drums separation example

stereo mixture original source estimated source
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Probabilistic time-domain mixing

filters



Proposed approach

Time-domain convolutive mixture model

xi (t) =
J∑

j=1

[aij ? sj ](t).

Time-frequency source representation

sj(t) =
∑

(f ,n)∈Bj

sj ,fnψj ,fn(t).

Latent random variables

• Time-frequency source coefficients {sj ,fn}j ,f ,n;

• Time-domain mixing filters {aij(t)}i ,j ,t .
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Student’s t distribution

Student’s t distribution: Tα(µ, σ)

• Shape: α > 0;

• Location: µ ∈ R;

• Scale: σ > 0.
-5 -4 -3 -2 -1 0 1 2 3 4 5

10
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10
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10
-1

(Gaussian)

(Cauchy)

probability density function
5.

Scale mixture of Gaussians

z ∼ Tα(µ, σ) ⇔


z |v ∼ N

(
µ, vσ2

)
v ∼ IG

(α
2
,
α

2

)
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Source model

Student’s t source model based on NMF [2].

Independently for all sources and TF

points:

sj ,fn ∼ Tαv

(
0, (WjHj)

1
2
f ,n

)
.

Remark: Generalization of the previous Gaussian model.

[2] K. Yoshii, K. Itoyama and M. Goto, ”Student’s t nonnegative matrix factorization and positive semidefinite tensor

factorization for single-channel audio source separation”, IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 2016. 30



Gaussian RIR model (1)
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Gaussian model with exponential decay [3]

Independently for all microphones, sources and time instants:

aij(t) ∼ exp(−t/τ)N (0, σ2
r ),

where τ is defined according to the reverberation time.

Theoretically valid only for late reverberation (diffuse sound field).

[3] J. D. Polack, ”La transmission de l’énergie sonore dans les salles”, Ph.D. dissertation, Université du Maine, 1988.
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Gaussian RIR model (2)
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Gaussian model with exponential decay [3]

Equivalently:

aij(t)/ exp(−t/τ)
i .i .d∼ N (0, σ2

r ),

where τ is defined according to the reverberation time.

Theoretically valid only for late reverberation (diffuse sound field).

[3] J. D. Polack, ”La transmission de l’énergie sonore dans les salles”, Ph.D. dissertation, Université du Maine, 1988.
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Student’s t RIR model

Distribution of the normalized RIR coefficients
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• 624 RIRs from the

MIRD database [4];

• Reverberation time

equals 610 ms.

[4] E. Hadad, F. Heese, P. Vary, and S. Gannot, ”Multichannel audio database in various acoustic environments”, IEEE

International Workshop on Acoustic Signal Enhancement (IWAENC), 2014.

33



Student’s t RIR model

Distribution of the normalized RIR coefficients
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Student’s t RIR model

Distribution of the normalized RIR coefficients
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• 624 RIRs from the

MIRD database [4];

• Reverberation time

equals 610 ms.

Student’s t model with exponential decay

Independently for all microphones, sources and time instants:

aij(t) ∼ Tαu(0, r(t)), r2(t) = σ2
r exp(−2t/τ).

[4] E. Hadad, F. Heese, P. Vary, and S. Gannot, ”Multichannel audio database in various acoustic environments”, IEEE

International Workshop on Acoustic Signal Enhancement (IWAENC), 2014.
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Bayesian network

• z: set of all latent variables (empty circles);

• x: set of observations (shaded circles);

• θ: set of model parameters to be estimated (dots).
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Variational inference

• Exact posterior inference is analytically intractable.

• Variational inference with mean-field approximation:

q(z) =
∏
zk∈z

qk(zk).

• Under this approximation we can show that:

qsjfn(sj ,fn)? = N(ŝj ,fn, γj ,fn);

qaijt(aij(t))? = N (âij(t), ρij(t)) ;

qvjfn(vj ,fn)? = IG (νv , βj ,fn);

quijt(uij(t))? = IG (νu, dij(t)).

• E-Step → update all the variational parameters.

36



M-Step

Maximize (or only increase) the variational free energy w.r.t θ.

NMF parameters

min
Wj ,Hj≥0

∑
(f ,n)∈Bj

dIS

(〈
v−1
j ,fn

〉
q?

〈
s2
j ,fn

〉
q?
, (WjHj)f ,n

)
,

where dIS(·, ·) is the Itakura-Saito divergence.

→ multiplicative update rules [1].

Noise variance

σ2
i is manually decreased along the iterations.

priors

data

high 

variance

low

variance
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Experimental setup

• Dataset:

• 8 stereo mixtures created with RIRs from the MIRD database [4];

• Reverberation times: 160, 360 and 610 ms;

• Number of sources per mixture: 3 to 5;

• Musical sources: drums, piano, bass, guitar, voice;

• Duration: 12 to 28 seconds.

• Semi-blind scenario:

• NMF dictionaries Wj are pre-trained using the true source signals;

• Reverberation time is assumed to be known;

• All other parameters are blindly estimated.
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Model hyperparameters

How do we choose αv , αu and the MDCT window length?

Average performance using the mixtures with a reverberation time of 360 ms
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Reference methods

• Ozerov et al. [5] – Sawada et al. [6]:

• Similar models:

• Source model: STFT - Gaussian - NMF.

• Convolutive mixture model: STFT - approximate.

• Different estimation algorithms.

• Our previous method with deterministic and unconstrained

time-domain mixing filters.

[5] A. Ozerov, E. Vincent and F. Bimbot, “A general flexible framework for the handling of prior information in audio source

separation”, IEEE Transactions on Audio, Speech, and Language Processing, 2012.

[6] H. Sawada, H. Kameoka, S. Araki and N. Ueda, “Multichannel extensions of non-negative matrix factorization with

complex-valued data”. IEEE Transactions on Audio, Speech, and Language Processing, 2013.
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Source separation results
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Mixing filters: Influence of the prior
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Audio example (1)

• Separation of 3 sources from a stereo mixture (T60 = 610 ms).

• All algorithms are run using oracle NMF dictionaries.

Stereo mixture:

source image drums guitar bass

original

Ozerov et al.

Sawada et al.

Gaussian - deterministic TD filters

Prop. w/o adapted TF window

Song: ”TV On” by Kismet. MTG MASS database.
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Audio example (2)

• Stereo mixture provided by Radio France (Edison 3D ANR project).

• Blind separation of voice and instrumental.

v
o
ic

e
in

s
tr

u
m

e
n
ta

l

voice 

+

intrumental

voice 

+

intrumental

voice 

+

intrumental

intrumental voice

time

Song: ”C’est magnifique” by Ella Fitzgerald (Nice Jazz Festival 1972 - Recording: ORTF).
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Conclusion



Conclusion

Multichannel audio source separation with time-domain convolutive

mixture model:

• Appropriate for highly reverberant mixtures;

• Necessary to have priors on the mixing filters;

• Multi-resolution source modeling.
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Perspectives: supervised source model

• Learn NMF dictionaries on an external dataset.

• What about neural networks?
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Perspectives: supervised source model

Variational autoencoder as a generative source model.

σ2
f (·): non-linear function parametrized by θs

j → neural network.

• Learning θs
j is “easy” in the framework of variational autoencoders.

• The difficulty lies in the inference of {zj ,n}n when the source signal

is not directly observed → Markov chain Monte Carlo methods.
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Thank you

Audio examples and Matlab code available online:

https://sleglaive.github.io
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