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Multichannel audio source separation

Objective: Recover source signals from the observation of several mixtures. 

Context: Under-determined and reverberant. 
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Time-frequency source representation

Time-frequency (TF) transforms provide meaningful representations.
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Modeling reverberant mixtures (1)

Convolutive model in the time domain:
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Modeling reverberant mixtures (2)

Convolutive model in the Short-Term Fourier Transform (STFT) domain:
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Probabilistic framework

sources: 
latent random variables

mixing and source 
parameters

observed 
data
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Mixture model

Convolutive noisy mixture of J sources on I channels

STFT domain:
∀(f , n) ∈ {0, ...,F − 1} × {0, ...,N − 1} xi ,fn =

J∑
j=1

aij ,f sj ,fn + bi ,fn.

sj,fn

xi,fn

aij,f
bi,fn I Frequency response of the mixing filters: aij ,f ;

I Source STFT coefficients: sj ,fn;

I Additive Gaussian noise: bi ,fn ∼ Nc(0, σ2
b,f ).

In matrix form

xfn = Af sfn + bfn, (1)

where xfn = [xi ,fn]i ∈ CI , sfn = [sj ,fn]j ∈ CJ , Af = [aij ,f ]ij ∈ CI×J and
bfn = [bi ,fn]i ∈ CI .
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Source model

Gaussian source model based on Non-negative Matrix Factorization
[Févotte et al., 2009].
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[Févotte et al., 2009] ”Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music
analysis”. Neural computation.
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Statistical inference - ML

I Latent source random variables: s = {sj ,fn}j ,f ,n;

I Observed random variables: x = {xi ,fn}i ,f ,n;

I Model parameters: η =
{
{Wj ,Hj}j ,

{
Af , σ

2
b,f

}
f

}
.

Source estimation according to the posterior mean

ŝ = Es|x;η? [s]

Maximum Likelihood parameters estimation

η? = arg max
η

p(x;η)

→ Expectation-Maximization (EM) algorithm [Ozerov and Févotte, 2010].

[Ozerov and Févotte, 2010] ”Multichannel nonnegative matrix factorization in convolutive mixtures for audio source
separation”. IEEE Transactions on Audio, Speech and Language Processing.
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Statistical inference - MAP

I Latent source random variables: s = {sj ,fn}j ,f ,n;

I Observed random variables: x = {xi ,fn}i ,f ,n;

I Model parameters: η =
{
{Wj ,Hj}j ,

{
Af , σ

2
b,f

}
f

}
.

Source estimation according to the posterior mean

ŝ = Es|x;η? [s]

Maximum A Posteriori parameters estimation

η? = arg max
η

p(x|η)p
(
{aij ,f }i ,j ,f

)
→ Expectation-Maximization (EM) algorithm.
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Room impulse response

Mixing filters are room responses. They exhibit a simple specific
structure in the time-domain.

magnitude

early contributions

direct path

early echoes

late reverberation

time
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Room impulse and frequency responses

Room impulse and frequency responses

For t, f ∈ {0, ...,T − 1}:

h(t) = he(t) + hl(t)︸ ︷︷ ︸
Room impulse response (RIR)

FT

�
F−1

T

H(f ) = He(f ) + Hl(f )︸ ︷︷ ︸
Room frequency response (RFR)

FT : Discrete Fourier Transform (DFT)

magnitude

time

Mixing time:

t0 =
⌊
C0

√
V fs
⌋

samples

I C0 = 2× 10−3

I V : volume of the room

I fs : sampling rate
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Early contributions model (1)

magnitude

time

k-th early contribution: amplitude ρk and delay τk

He(f ) =
R−1∑
k=0

ρkδ
f
k with δk = e−j2πτk/T . (2)
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Early contributions model (2)

It follows (see, e.g., [Kumaresan, 1983])

{He(f )}f =R,...,T−1 satisfies
R∑

r=0

ϕe
rHe(f − r) = 0, (3)

where {ϕe
r }Rr=0 and {δk}R−1

k=0 are the coefficients and roots of the same
polynomial of order R.

Adding an error term → autoregressive model

R∑
r=0

ϕe
rHe(f − r) = κ(f ) with κ(f ) ∼ Nc(0, σ2

κ). (4)

[Kumaresan, 1983] ”On the zeros of the linear prediction-error filter for deterministic signals”. IEEE Transactions on
Acoustics, Speech, and Signal Processing.

For more details: [Leglaive et al., 2015] ”Multichannel audio source separation with probabilistic reverberation modeling”.
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
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Autoregressive model of order 1

Assuming that the direct path dominates the early echoes:

|He(f )| ≈ |He(f − 1)| and arg(He(f )) ≈ arg(He(f − 1))− 2π
τ0

T
.
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Late reverberation model (time domain)

magnitude

time

Power Temporal Profil (PTP) → exponential decay

h̄l(t) = E
[
hl(t)2

]
∝ e−2t/τ

1t≥t0(t),

I τ = T60fs
3 ln(10) samples, with T60 the reverberation time in seconds;

I E[·]: spatial averaging.
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Late reverberation model (frequency domain)

Statistical room acoustics: {Hl(f )}f is a proper centered and WSS
complex Gaussian random process.

Theoretical Power Spectral Density (PSD)

We can show that the PSD is related to the PTP by:

φ(t) = Th̄l(T − t).

Theoretical Autocovariance function (ACVF)

Applying the Wiener-Khinchin theorem we can obtain a theoretical
expression of the ACVF:

γ(m) = F−1
T {φ(t)}.

These quantities are theoretically defined according to some room
parameters (reverberation time, dimensions).
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Experimental validation

Empirical autocovariance functions computed from a Monte-Carlo
simulation on synthesized and real room responses.
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(a) 196 simulated RIRs
T60 = 0.25 s
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(b) 130 real RIRs
T60 = 1.8 s

7.5 × 9 × 3.5 m

Figure: Theoretical and empirical autocovariance functions
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ARMA parametrization

ARMA representation of late reverberation in the frequency domain

We assume that {Hl(f )}f follows an ARMA(P,Q) model:

Φ(L)Hl(f ) = Θ(L)ε(f ),

I Φ(L) =
P∑

p=0
ϕl
pL

p and Θ(L) =
Q∑

q=0
θqL

q with ϕl
0 = θ0 = 1;

I L is the lag operator, i.e. LHl(f ) = Hl(f − 1);

I ε(f ) ∼ Nc(0, σ2
ε ).

We can compute the ARMA parameters from the theoretical ACVF.
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Experimental validation

Same room parameters as used before for simulated RIRs
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Figure: ARMA(7,2) parametrization
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Figure: Synthesized late RIR

For more details: [Leglaive et al., 2016] ”Autoregressive moving average modeling of late reverberation in the frequency
domain”. European Signal Processing Conference (EUSIPCO).
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EM algorithm

I Mixing matrix: Af = Ae,f︸︷︷︸
early reverb.

+ Al ,f︸︷︷︸
late reverb.

E-step

Q(η|ηold) = Es|x,ηold

[
ln p(x, s|η)

]
M-step

ML estimation:

η? = arg max
η

Q(η|ηold)

MAP estimation:

η? = arg max
η

Q(η|ηold)

+ ln p({Ae,f }) + ln p({Al ,f })

⇒ ML and MAP estimations only differ in the mixing filters update at
the M-step.
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Early reverberation prior

Early reverberation prior

We consider an AR(1) model for the early part of the mixing filters:

ln p({Ae,f }f )
c
= − 1

σ2
κ

F−1∑
f =1

∣∣∣∣∣∣Ae,f −∆ ◦ Ae,f−1

∣∣∣∣∣∣2
F
, (5)

where ∆ = [δij ]ij ∈ CI×J , || · ||2F is the Frobenius norm and ◦ is the
element-wise matrix product.

Hyperparameters

I AR coefficients {δij}ij : Estimated within the M-step.

I Noise variance σ2
κ: Expresses how confident we are about the prior

(assumed to be fixed).
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Late reverberation prior

Late reverberation prior

We consider an ARMA(7,2) model for the late part of the mixing filters:

ln p({Al
f }f )

c
= −

F−1∑
f =0

Trace

[(
Φ(L)

Θ(L)
Al ,f

)H

Σ−1
ε,f

(
Φ(L)

Θ(L)
Al ,f

)]
, (6)

where Σε,f = σ2
ε II .

Hyperparameters

I ARMA coefficients: Learned and fixed from the theoretical ACVF,
knowing some room parameters.

I Noise variance σ2
ε : Expresses how confident we are about the prior

(assumed to be fixed).

26/54 March 22, 2017 Modeling Reverberant Mixtures for Multichannel Audio-Source Separation



Introduction Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Outline

Convolutive mixture model in the STFT domain
Baseline source separation framework
Room frequency response modeling
Source separation with reverberation priors
Experiments
Limitations

Convolutive mixture model in the time domain
Model
Inference
Experiments
Ongoing work

Conclusion

27/54 March 22, 2017 Modeling Reverberant Mixtures for Multichannel Audio-Source Separation



Introduction Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Experiments

I Dataset composed of 8 stereo mixtures:
I Created using synthetic room impulse responses;
I Reverberation time: 128 ms;
I Duration: 12 to 28 seconds;
I Number of musical sources: 3 to 5.

I Source separation results: ML (w/o priors) vs. MAP (w/ priors).

I Both algorithms are run from the same blind initialization.
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Source separation results
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For more details: [Leglaive et al., 2016] ”Multichannel audio source separation with probabilistic reverberation priors”. IEEE
Transactions on Audio, Speech and Language Processing.
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Audio example

I Separation of 4 sources from a stereo mixture.

I Both algorithms are run from the same blind initialization.

Stereo mixture:

source drums guitar 1 guitar 2 voice

original

estimated
ML MAP ML MAP ML MAP ML MAP

Song: ”TV On” by Kismet. MTG MASS database.
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Main limitation

Error due to the STFT approximation of the convolutive mixing process.

300
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0
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Convolutive mixture model aproximation error

Reverberation time (ms)

STFT analysis

window length

Average relative squared error: ∆x =
1

IFN

∑
i ,f ,n

| xi ,fn − x̂i ,fn |2

| xi ,fn |2
,

I xi ,fn = STFT{xi (t)};

I x̂i ,fn =
J∑

j=1
aij ,f sj ,fn.
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Overcoming this limitation

I More accurate time-frequency convolutive mixture models:

I 2D filtering [Badeau and Plumbley, 2014];

I Subband filtering (convolutive transfer function) [Li et al., 2017];

I Time-domain convolutive mixture model [Kowalski et al., 2010].

[Badeau and Plumbley, 2014] ”Multichannel high-resolution NMF for modeling convolutive mixtures of non-stationary signals
in the time-frequency domain”. IEEE Transactions on Audio, Speech and Language Processing.

[Li et al., 2017] ”Audio source separation based on convolutive transfer function and frequency-domain Lasso optimization”.
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

[Kowalski et al., 2010] ”Beyond the narrowband approximation: Wideband convex methods for under-determined reverberant
audio source separation”. IEEE Transactions on Audio, Speech, and Language Processing.
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Proposed approach

TF source model and time-domain convolutive mixture model.
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Mixture model

Time-domain convolutive mixture model

xi (t) =
J∑

j=1

[aij ? sj ](t) + bi (t), (7)

with bi (t)
i .i .d∼ N (0, σ2

i ).

Time-frequency source representation

sj(t) =
F−1∑
f =0

N−1∑
n=0

sj ,fnψfn(t), (8)

with ψfn(t) a Modified Discrete Cosine Transform (MDCT) atom.
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Source model

Gaussian source model based on Non-negative Matrix Factorization.
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Remark: Source time-frequency coefficients are real-valued.
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Statistical inference

I Latent time-frequency random variables: s = {sj ,fn}j ,f ,n;

I Observed time-domain random variables: x = {xi (t)}i ,t ;
I Model parameters: η =

{
{Wj ,Hj}j , {aij(t)}i ,j ,t , {σ2

i }i
}
.

Source and parameter estimation

I Source estimation according to the posterior mean:

ŝ = Es|x;η? [s].

I Maximum likelihood estimation of the parameters:

η? = arg max
η

p(x;η).

The posterior distribution is Gaussian but with a high-dimensional full
covariance matrix → Variational inference.
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Variational inference

I We want to find q ∈ F which approximates p(s|x;η).

I Taking the KL divergence as a measure of fit, we can show that:

KL(q||p(s|x;η)) = ln p(x;η)︸ ︷︷ ︸
Log-likelihood

− L(q;η)︸ ︷︷ ︸
Variational Free Energy

, (9)

where L(q;η) =

〈
ln

(
p(x,s;η)
q(s)

)〉
q

and 〈f (s)〉q =
∫
f (s)q(s)ds.

I Variational Expectation-Maximization algorithm:

I E-step: q? = arg min
q∈F

KL(q||p(s|x;ηold)) = arg max
q∈F

L(q;ηold);

I M-step: ηnew = arg max
η

L(q?;η).
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Mean-field approximation

true posterior

mean eld 

approximation
: set of pdfs over     that factorize as

Under the mean- eld approximation we can show that:

source estimate
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M-Step

Maximize (or only increase) the variational free energy w.r.t η.

NMF parameters

Compute an NMF with the Itakura-Saito divergence on:〈
s2
j ,fn

〉
q?

= m2
j ,fn + γj ,fn,

→ standard multiplicative update rules.

Mixing filters

Solve a Toeplitz system of equations for aij = [aij(0), ..., aij(La − 1)]T .

Noise variance

σ2
i =

1

T

T−1∑
t=0

〈xi (t)−
J∑

j=1

[aij ? sj ](t)

2〉
q?

.
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Oracle experiment

I Dataset: Same as before with different reverberation times;
I Oracle initialization of the parameters;
I STFT and MDCT analysis/synthesis window length: 128 ms.
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[Ozerov and Févotte, 2010] 
Proposed

For more details: [Leglaive et al., 2017] ”Multichannel audio source separation: variational inference of time-frequency sources
from time-domain observations”. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).
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Semi-blind experiment

I Mixing filters are known and fixed;

I All other parameters are blindly estimated;

I Compared methods:

Convolutive mixture model
Exact (time) Approximate (TF)

Source
model
(TF)

Sparse
(`1)

[Kowalski et al., 2010] -

Gaussian
NMF-based

Proposed [Ozerov and Févotte, 2010]

I Dataset: Same as before with a reverberation time of 256 ms.

[Kowalski et al., 2010] ”Beyond the narrowband approximation: Wideband convex methods for under-determined reverberant
audio source separation”. IEEE Transactions on Audio, Speech, and Language Processing.
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Semi-blind experiment results
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Semi-blind audio example

Stereo mixture:

Original [Ozerov and Févotte, 2010] [Kowalski et al., 2010] Proposed

Drums

Guitar 1

Guitar 2

Voice

Bass

Musical excerpt from ”Ana” by Vieux Farka Toure. MTG MASS database.
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Ongoing work

Probabilistic priors on the mixing filters in the time domain.
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Student’s t distribution

Student’s t distribution: Tα(µ, σ)

I Shape: α;

I Location: µ;

I Scale: σ.
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Conclusion

Convolutive mixture model in the STFT domain:
I Time-domain dynamics of the mixing filter → frequency-domain

correlations:
I Early reverberation: AR model;
I Late reverberation: ARMA model.

I This approach is limited to low reverberation conditions.

Convolutive mixture model in the time domain:

I Accurate for long reverberation times;

I Good separation quality in a semi-blind setting;

I Suitable for incorporating simple priors on the mixing filters, in the
time domain.
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Thank you

More audio examples and Matlab code available at:

https://perso.telecom-paristech.fr/leglaive/

https://perso.telecom-paristech.fr/leglaive/
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