

Modeling Reverberant Mixtures for Multichannel Audio-Source Separation

Simon Leglaive

Ph.D. supervisors: Roland Badeau and Gaël Richard

LTCI, Télécom ParisTech, Université Paris Saclay

Seminar at PERCEPTION group, INRIA Grenoble Rhône-Alpes, Montbonnot Saint-Martin

March 22, 2017

Multichannel audio source separation

Objective: Recover source signals from the observation of several mixtures.

Context: Under-determined and reverberant.

Time-frequency source representation

Time-frequency (TF) transforms provide meaningful representations.

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Modeling reverberant mixtures (1)

Convolutive model in the time domain:

Modeling reverberant mixtures (2)

Convolutive model in the Short-Term Fourier Transform (STFT) domain:

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Probabilistic framework

Convolutive mixture model in the STET domain. Convolutive mixture model in the time domain. Conclusion

Outline

Convolutive mixture model in the STFT domain

Baseline source separation framework Room frequency response modeling Source separation with reverberation priors Experiments Limitations

Ongoing work

Introduction •**^^^^**

Convolutive mixture model in the STET domain. Convolutive mixture model in the time domain. Conclusion

Outline

Convolutive mixture model in the STFT domain

Baseline source separation framework

- Ongoing work

Mixture model

Convolutive noisy mixture of J sources on I channels

STFT domain:

$$\forall (f,n) \in \{0,...,F-1\} \times \{0,...,N-1\} \quad \left| x_{i,fn} = \right\}$$

$$x_{i,fn} = \sum_{j=1}^{J} \frac{a_{ij,f}}{s_{j,fn}} + b_{i,fn}.$$

- ▶ Source STFT coefficients: *s_{i,fn}*;
- Additive Gaussian noise: $b_{i,fn} \sim \mathcal{N}_c(0, \sigma_{b,f}^2)$.

S_{j,fn}

Mixture model

Convolutive noisy mixture of J sources on I channels

STFT domain:

$$\forall (f, n) \in \{0, ..., F - 1\} \times \{0, ..., N - 1\}$$
 $x_{i, fn} = \sum_{j=1}^{J} a_{ij, f} s_{j, fn} + b_{i, fn}$

- ► Source STFT coefficients: *s*_{*j*,*fn*};
- Additive Gaussian noise: $b_{i,fn} \sim \mathcal{N}_c(0, \sigma_{h,f}^2)$.

In matrix form

$$\mathbf{x}_{fn} = \mathbf{A}_f \mathbf{s}_{fn} + \mathbf{b}_{fn},\tag{1}$$

where $\mathbf{x}_{fn} = [x_{i,fn}]_i \in \mathbb{C}^I$, $\mathbf{s}_{fn} = [s_{i,fn}]_i \in \mathbb{C}^J$, $\mathbf{A}_f = [a_{ii,f}]_{ii} \in \mathbb{C}^{I \times J}$ and $\mathbf{b}_{fn} = [b_{i,fn}]_i \in \mathbb{C}^I.$

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Source model

Gaussian source model based on Non-negative Matrix Factorization [Févotte et al., 2009].

[Févotte et al., 2009] "Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis". Neural computation.

9/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
------	----------------	--

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain. Conclusion

Statistical inference - ML

- Latent source random variables: $\mathbf{s} = \{s_{i,fn}\}_{i,f,n}$;
- Observed random variables: $\mathbf{x} = \{x_{i,fn}\}_{i,f,n}$;
- Model parameters: $\boldsymbol{\eta} = \left\{ \left\{ \mathbf{W}_{j}, \mathbf{H}_{j} \right\}_{j}, \left\{ \mathbf{A}_{f}, \sigma_{b, f}^{2} \right\}_{f} \right\}$.

Source estimation according to the posterior mean

$$\hat{\mathbf{s}} = \mathbb{E}_{\mathbf{s}|\mathbf{x}; \boldsymbol{\eta}^{\star}}[\mathbf{s}]$$

Maximum Likelihood parameters estimation

$$m{\eta}^{\star} = rg\max_{m{\eta}} p(\mathbf{x};m{\eta})$$

\rightarrow Expectation-Maximization (EM) algorithm [Ozerov and Févotte, 2010].

[Ozerov and Févotte, 2010] "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation", IEEE Transactions on Audio, Speech and Language Processing,

10/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Convolutive mixture model in the STET domain. Convolutive mixture model in the time domain. Conclusion

Statistical inference - MAP

- Latent source random variables: $\mathbf{s} = \{s_{i,fn}\}_{i,f,n}$;
- Observed random variables: $\mathbf{x} = \{x_{i,fn}\}_{i,f,n}$;

• Model parameters:
$$\boldsymbol{\eta} = \left\{ \left\{ \mathbf{W}_{j}, \mathbf{H}_{j} \right\}_{j}, \left\{ \mathbf{A}_{f}, \sigma_{b, f}^{2} \right\}_{f} \right\}.$$

Source estimation according to the posterior mean

$$\hat{\mathbf{s}} = \mathbb{E}_{\mathbf{s} | \mathbf{x}; \boldsymbol{\eta}^{\star}}[\mathbf{s}]$$

Maximum A Posteriori parameters estimation

$$\eta^{\star} = rg\max_{oldsymbol{\eta}} pig({f x} | oldsymbol{\eta} ig) pig(ig\{ {f a}_{ij,f} ig\}_{i,j,f} ig)$$

 \rightarrow Expectation-Maximization (EM) algorithm.

Outline

Convolutive mixture model in the STFT domain

Baseline source separation framework

Room frequency response modeling

- Ongoing work

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Room impulse response

Mixing filters are room responses. They exhibit a simple specific structure in the time-domain.

Room impulse and frequency responses

Room impulse and frequency responses

For $t, f \in \{0, ..., T - 1\}$:

$$\underbrace{h(t) = h_e(t) + h_l(t)}_{\text{Room impulse response (RIR)}} \stackrel{\mathcal{F}_T}{\underset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{\overset{\mathcal{F}_T^{-1}}}{$$

 $\mathcal{F}_{\mathcal{T}}$: Discrete Fourier Transform (DFT)

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Early contributions model (1)

magnitude $h_e(t)$ ρ_0 ρ_1 $\rho_{\mathsf{R}-1}$ \mathcal{T}_0 $\tau_1 \quad \cdots \quad \tau_{R-1}$ time

k-th early contribution: amplitude ρ_k and delay τ_k

$$H_e(f) = \sum_{k=0}^{R-1} \rho_k \delta_k^f \quad \text{with} \quad \delta_k = e^{-j2\pi\tau_k/T}.$$
 (2)

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Early contributions model (2)

$$\{H_e(f)\}_{f=R,...,T-1}$$
 satisfies

$$\sum_{r=0}^{R} \varphi_r^e H_e(f-r) = 0, \qquad (3)$$

where $\{\varphi_r^e\}_{r=0}^R$ and $\{\delta_k\}_{k=0}^{R-1}$ are the coefficients and roots of the same polynomial of order R.

Adding an error term \rightarrow autoregressive model

$$\sum_{r=0}^{R} \varphi_r^e H_e(f-r) = \kappa(f) \quad \text{with} \quad \kappa(f) \sim \mathcal{N}_c(0, \sigma_\kappa^2). \tag{4}$$

[Kumaresan, 1983] "On the zeros of the linear prediction-error filter for deterministic signals". IEEE Transactions on Acoustics, Speech, and Signal Processing.

For more details: [Leglaive et al., 2015] "Multichannel audio source separation with probabilistic reverberation modeling". IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).

16/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Autoregressive model of order 1

Assuming that the direct path dominates the early echoes:

 $|H_e(f)| \approx |H_e(f-1)|$ and $\arg(H_e(f)) \approx \arg(H_e(f-1)) - 2\pi \frac{\tau_0}{T}$.

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Late reverberation model (time domain)

Power Temporal Profil (PTP) \rightarrow exponential decay

$$ar{h}_l(t) = \mathbb{E}\left[h_l(t)^2
ight] \propto e^{-2t/ au}\mathbbm{1}_{t\geq t_0}(t),$$

▶ $\tau = \frac{T_{60}f_s}{3\ln(10)}$ samples, with T_{60} the reverberation time in seconds; \blacktriangleright $\mathbb{E}[\cdot]$: spatial averaging.

Late reverberation model (frequency domain)

Statistical room acoustics: $\{H_l(f)\}_f$ is a proper centered and WSS complex Gaussian random process.

Late reverberation model (frequency domain)

Statistical room acoustics: $\{H_l(f)\}_f$ is a proper centered and WSS complex Gaussian random process.

Theoretical Power Spectral Density (PSD)

We can show that the PSD is related to the PTP by:

$$\phi(t)=T\bar{h}_l(T-t).$$

Late reverberation model (frequency domain)

Statistical room acoustics: $\{H_l(f)\}_f$ is a proper centered and WSS complex Gaussian random process.

Theoretical Power Spectral Density (PSD)

We can show that the PSD is related to the PTP by:

$$\phi(t)=T\bar{h}_l(T-t).$$

Theoretical Autocovariance function (ACVF)

Applying the Wiener-Khinchin theorem we can obtain a theoretical expression of the ACVF:

$$\gamma(m) = \mathcal{F}_T^{-1}\{\phi(t)\}.$$

These quantities are theoretically defined according to some room parameters (reverberation time, dimensions).

19/54

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Experimental validation

Empirical autocovariance functions computed from a Monte-Carlo simulation on synthesized and real room responses.

Figure: Theoretical and empirical autocovariance functions

ARMA parametrization

ARMA representation of late reverberation in the frequency domain

We assume that $\{H_l(f)\}_f$ follows an ARMA(P, Q) model:

$$\Phi(L)H_l(f) = \Theta(L)\epsilon(f),$$

•
$$\Phi(L) = \sum_{p=0}^{P} \varphi_p^l L^p$$
 and $\Theta(L) = \sum_{q=0}^{Q} \theta_q L^q$ with $\varphi_0^l = \theta_0 = 1$;

• L is the lag operator, i.e. $LH_l(f) = H_l(f-1)$;

• $\epsilon(f) \sim \mathcal{N}_{\epsilon}(0, \sigma_{\epsilon}^2).$

We can compute the ARMA parameters from the theoretical ACVF.

Experimental validation

Same room parameters as used before for simulated RIRs

Figure: ARMA(7,2) parametrization

Figure: Synthesized late RIR

For more details: [Leglaive et al., 2016] "Autoregressive moving average modeling of late reverberation in the frequency domain". European Signal Processing Conference (EUSIPCO).

22/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Outline

Convolutive mixture model in the STFT domain

Baseline source separation framework

Source separation with reverberation priors

Ongoing work

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

EM algorithm

Mixing matrix:
$$\mathbf{A}_{f} = \underbrace{\mathbf{A}_{e,f}}_{\text{early reverb.}} + \underbrace{\mathbf{A}_{l,f}}_{\text{late reverb.}}$$

E-step

$$Q(oldsymbol{\eta}|oldsymbol{\eta}_{\mathsf{old}}) = \mathbb{E}_{\mathsf{s}|\mathsf{x},oldsymbol{\eta}_{\mathsf{old}}}ig[\ln p(\mathsf{x},\mathsf{s}|oldsymbol{\eta})ig]$$

M-step ML estimation: MAP estimation: $oldsymbol{\eta}^{\star} = rg\max_{oldsymbol{\eta}} Q(oldsymbol{\eta} | oldsymbol{\eta}_{\mathsf{old}})$ $oldsymbol{\eta}^{\star} = rg\max_{oldsymbol{\eta}} Q(oldsymbol{\eta} | oldsymbol{\eta}_{\mathsf{old}})$ $+ \ln p(\{\mathbf{A}_{e,f}\}) + \ln p(\{\mathbf{A}_{l,f}\})$

 \Rightarrow ML and MAP estimations only differ in the mixing filters update at the M-step.

24/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Early reverberation prior

Early reverberation prior

We consider an AR(1) model for the early part of the mixing filters:

$$\ln p(\{\mathbf{A}_{e,f}\}_f) \stackrel{c}{=} -\frac{1}{\sigma_{\kappa}^2} \sum_{f=1}^{F-1} \left| \left| \mathbf{A}_{e,f} - \mathbf{\Delta} \circ \mathbf{A}_{e,f-1} \right| \right|_F^2, \quad (5)$$

where $\mathbf{\Delta} = [\delta_{ij}]_{ij} \in \mathbb{C}^{I \times J}$, $|| \cdot ||_F^2$ is the Frobenius norm and \circ is the element-wise matrix product.

Hyperparameters

- AR coefficients $\{\delta_{ii}\}_{ii}$: Estimated within the M-step.
- Noise variance σ_{κ}^2 : Expresses how confident we are about the prior (assumed to be fixed).

Late reverberation prior

Late reverberation prior

We consider an ARMA(7,2) model for the late part of the mixing filters:

$$\ln p(\{\mathbf{A}_{f}^{l}\}_{f}) \stackrel{c}{=} -\sum_{f=0}^{F-1} \operatorname{Trace}\left[\left(\frac{\Phi(L)}{\Theta(L)}\mathbf{A}_{l,f}\right)^{H} \mathbf{\Sigma}_{\epsilon,f}^{-1}\left(\frac{\Phi(L)}{\Theta(L)}\mathbf{A}_{l,f}\right)\right], \quad (6)$$

where
$$\boldsymbol{\Sigma}_{\boldsymbol{\epsilon},f} = \sigma_{\boldsymbol{\epsilon}}^2 \mathbf{I}_{I}$$
.

Hyperparameters

- ARMA coefficients: Learned and fixed from the theoretical ACVF. knowing some room parameters.
- Noise variance σ_{ϵ}^2 : Expresses how confident we are about the prior (assumed to be fixed).

Convolutive mixture model in the STET domain. Convolutive mixture model in the time domain. Conclusion

Outline

Convolutive mixture model in the STFT domain

Baseline source separation framework Experiments

Ongoing work

Experiments

- Dataset composed of 8 stereo mixtures:
 - Created using synthetic room impulse responses;
 - Reverberation time: 128 ms:
 - Duration: 12 to 28 seconds:
 - Number of musical sources: 3 to 5.
- Source separation results: ML (w/o priors) vs. MAP (w/ priors).
- Both algorithms are run from the same blind initialization.

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Source separation results

For more details: [Leglaive et al., 2016] "Multichannel audio source separation with probabilistic reverberation priors". IEEE Transactions on Audio, Speech and Language Processing.

29/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Audio example

- Separation of 4 sources from a stereo mixture.
- Both algorithms are run from the same blind initialization.

Stereo mixture 🔘

source	source drums		guitar 1		guitar 2		voice	
original	0		0		0		0	
estimated	ML	MAP	ML	MAP	ML	MAP	ML	MAP

Song: "TV On" by Kismet. MTG MASS database.

Outline

Convolutive mixture model in the STFT domain

Baseline source separation framework

Limitations

Ongoing work

Main limitation

Error due to the STFT approximation of the convolutive mixing process.

Overcoming this limitation

- More accurate time-frequency convolutive mixture models:
 - 2D filtering [Badeau and Plumbley, 2014];
 - Subband filtering (convolutive transfer function) [Li et al., 2017];

Time-domain convolutive mixture model [Kowalski et al., 2010].

[Badeau and Plumbley, 2014] "Multichannel high-resolution NMF for modeling convolutive mixtures of non-stationary signals in the time-frequency domain". IEEE Transactions on Audio. Speech and Language Processing.

[Li et al., 2017] "Audio source separation based on convolutive transfer function and frequency-domain Lasso optimization". IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

[Kowalski et al., 2010] "Beyond the narrowband approximation: Wideband convex methods for under-determined reverberant audio source separation". IEEE Transactions on Audio, Speech, and Language Processing.

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain Conclusion

Outline

Baseline source separation framework

Convolutive mixture model in the time domain

Model Inference Experiments Ongoing work

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain Conclusion

Outline

Baseline source separation framework

Convolutive mixture model in the time domain

- Model

- Ongoing work

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Proposed approach

TF source model and time-domain convolutive mixture model.

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

(7)

Mixture model

Time-domain convolutive mixture model

$$x_i(t) = \sum_{j=1}^J [a_{ij} \star \mathbf{s}_j](t) + b_i(t),$$

with
$$b_i(t) \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma_i^2)$$
.

Time-frequency source representation

$$s_{j}(t) = \sum_{f=0}^{F-1} \sum_{n=0}^{N-1} s_{j,fn} \psi_{fn}(t), \qquad (8)$$

with $\psi_{fn}(t)$ a Modified Discrete Cosine Transform (MDCT) atom.

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Source model

Gaussian source model based on Non-negative Matrix Factorization.

Remark: Source time-frequency coefficients are real-valued.

38/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain Conclusion

Outline

Baseline source separation framework

Convolutive mixture model in the time domain

Inference

Ongoing work

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain Conclusion

Statistical inference

- Latent **time-frequency** random variables: $\mathbf{s} = \{s_{i,fn}\}_{i,f,n}$;
- Observed **time-domain** random variables: $\mathbf{x} = \{x_i(t)\}_{i,t}$;
- Model parameters: $\eta = \{ \{ \mathbf{W}_i, \mathbf{H}_i \}_i, \{ \mathbf{a}_{ii}(t) \}_{i,i,t}, \{ \sigma_i^2 \}_i \}.$

Source and parameter estimation

Source estimation according to the posterior mean:

$$\hat{\mathbf{s}} = \mathbb{E}_{\mathbf{s}|\mathbf{x}; \boldsymbol{\eta}^{\star}}[\mathbf{s}].$$

Maximum likelihood estimation of the parameters:

$$\boldsymbol{\eta}^{\star} = rg\max_{\boldsymbol{\eta}} p(\mathbf{x}; \boldsymbol{\eta}).$$

The posterior distribution is Gaussian but with a high-dimensional full covariance matrix \rightarrow **Variational inference**.

40/54	March 22, 2017	Modeling Reverberant Mixtures for Multichannel Audio-Source Separation
-------	----------------	--

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Variational inference

- We want to find $q \in \mathcal{F}$ which approximates $p(\mathbf{s}|\mathbf{x}; \eta)$.
- Taking the KL divergence as a measure of fit, we can show that:

$$KL(q||p(\mathbf{s}|\mathbf{x};\boldsymbol{\eta})) = \underbrace{\ln p(\mathbf{x};\boldsymbol{\eta})}_{\text{Log-likelihood}} - \underbrace{\mathcal{L}(q;\boldsymbol{\eta})}_{\text{Variational Free Energy}}, \quad (9)$$

where
$$\mathcal{L}(q; \eta) = \left\langle \left. \ln \left(\frac{p(\mathbf{x}, \mathbf{s}; \eta)}{q(\mathbf{s})} \right) \right\rangle_q$$
 and $\langle f(\mathbf{s}) \rangle_q = \int f(\mathbf{s}) q(\mathbf{s}) d\mathbf{s}$.

Variational Expectation-Maximization algorithm:

► **E-step**:
$$q^{\star} = \arg\min_{q \in \mathcal{F}} KL(q || p(\mathbf{s} | \mathbf{x}; \boldsymbol{\eta}_{old})) = \arg\max_{q \in \mathcal{F}} L(q; \boldsymbol{\eta}_{old});$$

• **M-step**:
$$\eta_{\text{new}} = \arg \max_{\eta} \mathcal{L}(q^*; \eta).$$

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

> true posterior mean field

approximation

Mean-field approximation

$$\mathcal{F}$$
: set of pdfs over ${f s}$ that factorize as

$$q(\mathbf{s}) = \prod_{j=1}^J \prod_{f=0}^{F-1} \prod_{n=0}^{N-1} q_{jfn}(s_{j,fn}).$$

Under the mean-field approximation we can show that:

$$q_{jfn}^{\star}(s_{j,fn}) = \underset{q_{jfn}}{\arg \max} \mathcal{L}(q; \boldsymbol{\eta}_{old}) = \mathsf{N}(s_{j,fn}; \mathsf{m}_{j,fn}, \gamma_{j,fn}).$$

M-Step

Maximize (or only increase) the variational free energy w.r.t η .

NMF parameters

Compute an NMF with the Itakura-Saito divergence on:

$$\left\langle s_{j,fn}^{2}\right\rangle _{q^{\star}}=m_{j,fn}^{2}+\gamma_{j,fn},$$

 \rightarrow standard multiplicative update rules.

Mixing filters

Solve a Toeplitz system of equations for $\mathbf{a}_{ii} = [a_{ii}(0), ..., a_{ii}(L_a - 1)]^{T}$.

Noise variance

$$\sigma_i^2 = \frac{1}{T} \sum_{t=0}^{T-1} \left\langle \left(x_i(t) - \sum_{j=1}^J [a_{ij} \star s_j](t) \right)^2 \right\rangle_{q^*}$$

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain Conclusion

Outline

Baseline source separation framework

Convolutive mixture model in the time domain

Experiments

Ongoing work

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Oracle experiment

- **Dataset**: Same as before with different reverberation times;
- **Oracle initialization** of the parameters;
- STFT and MDCT analysis/synthesis window length: 128 ms.

For more details: [Leglaive et al., 2017] "Multichannel audio source separation: variational inference of time-frequency sources from time-domain observations". IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP).

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Semi-blind experiment

- Mixing filters are known and fixed;
- All other parameters are blindly estimated;
- Compared methods:

		Convolutive mixture model			
		Exact (time)	Approximate (TF)		
Source	Sparse (ℓ_1)	[Kowalski et al., 2010]	-		
(TF)	Gaussian NMF-based	Proposed	[Ozerov and Févotte, 2010]		

Dataset: Same as before with a reverberation time of 256 ms.

[Kowalski et al., 2010] "Beyond the narrowband approximation: Wideband convex methods for under-determined reverberant audio source separation". IEEE Transactions on Audio. Speech, and Language Processing.

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Semi-blind experiment results

Introduction Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Semi-blind audio example

Stereo mixture: 🧕

	Original	[Ozerov and Févotte, 2010]	[Kowalski et al., 2010]	Proposed
Drums	0	0	0	0
Guitar 1	0	0	\odot	0
Guitar 2	0	0	0	0
Voice	0	0	0	0
Bass	0	0	0	۲

Musical excerpt from "Ana" by Vieux Farka Toure. MTG MASS database.

Convolutive mixture model in the STET domain Convolutive mixture model in the time domain Conclusion

Outline

Baseline source separation framework

Convolutive mixture model in the time domain

Model

Ongoing work

Convolutive mixture model in the STFT domain Convolutive mixture model in the time domain Conclusion

Ongoing work

Probabilistic priors on the mixing filters in the time domain.

Student's t distribution

Student's *t* distribution: $\mathcal{T}_{\alpha}(\mu, \sigma)$

- Shape: α ;
- Location: μ;
- Scale: σ.

Convolutive mixture model in the STET domain. Convolutive mixture model in the time domain. Conclusion

Outline

Baseline source separation framework

- Ongoing work

Conclusion

Conclusion

Convolutive mixture model in the STFT domain:

- \blacktriangleright Time-domain dynamics of the mixing filter \rightarrow frequency-domain correlations:
 - Early reverberation: AR model;
 - Late reverberation: ARMA model.
- This approach is limited to low reverberation conditions.

Convolutive mixture model in the time domain:

- Accurate for long reverberation times;
- Good separation quality in a semi-blind setting;
- Suitable for incorporating simple priors on the mixing filters, in the time domain

Thank you

More audio examples and Matlab code available at: https://perso.telecom-paristech.fr/leglaive/