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Introduction

Many applications:

. Biomedical signal processing and imaging;

. Astrophysics;

. Underwater acoustics;

. Audio signal processing;

. etc.
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Audio source separation

Objective: Recover source signals from one or multiple mixtures.

inverse problem

linear 

mixing

operator

Usually an ill-posed inverse problem (in Hadamard sense).
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Bayesian vs. deep learning approach

Bayesian approach:

. Need for prior knowledge (physically inspired, signal model, etc.).

. Solving the inverse problem: Posterior computation.

. Flexible.

Discriminative deep learning approach:

. Need for training data.

. Solving the inverse problem: Mapping (x1, x2)
DNN−→ (s1, s2, s3).

. State-of-the-art1.

. Not flexible (e.g. retrain if microphone added or SNR changed).

Best of both worlds: Deep-learning-based generative models as priors.

1https://sisec18.unmix.app
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Outline

1. Hand-designed priors for multichannel and reverberant audio

source separation

Joint work with Roland Badeau and Gaël Richard (Leglaive et al. 2018b)

2. Deep-learning-based priors for single-channel speech enhancement

Joint work with Laurent Girin and Radu Horaud (Leglaive et al. 2018a)
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Targeted scenario

Under-determined and reverberant multichannel mixture.

Two-step modeling approach:

. Source modeling;

. Mixing process modeling.
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Time-frequency source representation

A time-frequency (TF) transform provides a meaningful representation.
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Spectrograms computed from the short-term Fourier transform (STFT).
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Room impulse response (RIR)

recorded signal = source signal ? room impulse response

RIR magnitude

direct path

early echoes

late reverberation

time

Finite impulse response whose length equals the reverberation time.
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Multichannel reverberant mixtures

Convolutive mixture in the time domain

xi (t) =
J∑

j=1

[aij ? sj ](t), (1)

for all i ∈ {1, ..., I}, t ∈ {0, ...,T − 1}.

Convolutive mixture in the STFT domain

xi ,fn≈
J∑

j=1

aij ,f sj ,fn, (2)

for all (f , n) ∈ B = {0, ...,F − 1} × {0, ...,N − 1}.

Ph.D. research problem: Taking priors over the mixing filters into account.
9
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Mixed time domain / time-frequency domain modeling

Time-domain convolutive mixture model

xi (t) =
J∑

j=1

[aij ? sj ](t). (3)

Time-frequency synthesis source representation

sj(t) =
∑

(f ,n)∈Bj

sj ,fnψj ,fn(t). (4)

ψj ,fn(t) ∈ R is a source-dependent modified discrete cosine transform

(MDCT) atom and Bj = {0, ...,Fj − 1} × {0, ...,Nj − 1}.

Remark: Source time-frequency coefficients are real-valued.

Related to (Kowalski et al. 2010; Févotte and Kowalski 2014)
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Probabilistic modeling with latent variables

. Latent time-frequency source coefficients: s = {sj ,fn ∈ R}j ,f ,n

. Latent time-domain mixing filters: a = {aij(t) ∈ R}i ,j ,t

. Observed time-domain mixture coefficients: x = {xi (t) ∈ R}i ,t

Defining the probabilistic model

p (x, s, a;θ) = p(s;θs)× p(a;θa)× p(x|s, a;θm)

where θ = {θs ,θa,θm} is a set of deterministic model parameters.

. What prior knowledge do we have on the latent variables?

. How are the data generated from the latent variables?

11



Hand-designed priors for

multichannel and reverberant audio

source separation

Model



Student’s t distribution

Student’s t distribution: Tα(µ, σ)

. Shape: α > 0;

. Location: µ ∈ R;

. Scale: σ > 0.
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Student’s t NMF source model (Yoshii et al. 2016)

Student’s t source model with non-negative matrix factorization (NMF).

Independently for all j , f , n:

sj ,fn ∼ Tαv

(
0, (WjHj)

1
2
f ,n

)
, (5)

where

. Wj ∈ RFj×Kj

+ ;

. Hj ∈ RKj×Nj

+ ;

. Kj is the factorization rank.

Related to (Benaroya et al. 2003; Févotte et al. 2009), among many other works.
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Gaussian RIR model (Polack 1988)
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Gaussian model with exponential decay

Independently for all microphones i , sources j and time instants t:

aij(t) ∼ N
(
0, r2(t)

)
, r2(t) = σ2

r exp(−2t/τ), (6)

where τ is defined according to the reverberation time.
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Student’s t RIR model (1)
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Student’s t model with exponential decay

Independently for all microphones i , sources j and time instants t:

aij(t) ∼ Tαu (0, r(t)) , r(t) = σr exp(−t/τ). (7)

Remark: Generalization of the previous Gaussian model.
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Student’s t RIR model (2)
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Student’s t model with exponential decay

Equivalently:

aij(t)/ exp(−t/τ)
i .i .d∼ Tαu(0, σr ). (8)

Remark: Generalization of the previous Gaussian model.
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Experimental validation

. 624 RIRs from the MIRD database (Hadad et al. 2014);

. Reverberation time equals 610 ms.

. Empirical distribution of the normalized RIR coefficients.
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Conditional mixture distribution

Independently for all microphones i and time instants t:

xi (t) | s, a ∼
J∑

j=1

[aij ? sj ](t) +N
(
0, σ2

i

)
,

where we recall that sj(t) =
∑

(f ,n)∈Bj

sj ,fnψj ,fn(t).
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Bayesian network

. z: set of all latent variables (empty circles);

. x: set of observations (shaded circles);

. θ: set of model parameters to be estimated (dots).
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Variational inference with the mean field approximation

. Find q(z) ∈ F which approximates p(z|x;θ).

. We take the Kullback-Leibler divergence as a measure of fit:

DKL(q(z) ‖ p(z|x;θ)) = ln p(x;θ)︸ ︷︷ ︸
log-marginal likelihood

− L (q(z);θ)︸ ︷︷ ︸
variational free energy

≥ 0,

(9)

where L (q(z);θ) = Eq(z) [ln p(x, z;θ)− ln q(z)].

. Variational expectation-maximization algorithm:

. E-step: q?(z) = arg max
q(z)∈F

L(q(z);θ?)

. M-step: θ? = arg max
θ

L(q?(z);θ)

. F is the set of pdfs that can be factorized as q(z) =
∏
zk∈z

qk(zk).
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Necessity of the prior for the mixing filters

. Convolutive mixture equation: xi (t) =
J∑

j=1
[aij ? sj ](t).

. Multiple solutions can explain the same observed data.
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Blind audio source separation example

. Stereo mixture provided by Radio France (Edison 3D ANR project).

. Blind separation of voice and instrumental.
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Song: ”C’est magnifique” by Ella Fitzgerald (Nice Jazz Festival 1972 - Recording: ORTF).
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Postdoc research problem

How can we include neural networks in such probabilistic models?
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Introduction



Objective

. Learn a generative speech model directly from the data.

. Speaker-independent model.

. Deep learning approach.

. Application: semi-supervised speech enhancement.

...

noisy speech 

signal

clean speech 

signal

24



Deep-learning-based generative models

latent space

data space data space

generative

neural 

network

model distribution true data distribution

prior distribution

measure of fit

i.i.d samples

Examples:

. Variational autoencoders (Kingma and Welling 2014);

. Generative adversarial networks (Goodfellow et al. 2014);

. etc.
25
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Deep-learning-based generative speech model

In the STFT domain, independently for all (f , n) ∈ B, we define:

zn ∼ N (0, IL) (10)

sfn | zn ∼ Nc(0, σ2
f (zn)), (11)

where sfn ∈ C and zn ∈ RL is a low-dimensional latent random vector.

Generative network

We denote by θs the

weights and the biases.

Related to (Kingma and Welling 2014; Bando et al. 2018)
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Relation to supervised Itakura-Saito NMF (Févotte et al. 2009)

NMF-based variance parametrization: sfn ∼ Nc(0, (WH)f ,n = w>f hn)

. Training time: Learn W ∈ RF×K
+ from clean signals.

. Test time: Estimate H ∈ RK×N
+ from the noisy observations.

. The variance is a linear function of hn ∈ RK
+ (low-dimensional).

. Interpretable / linear / constrained number of trainable parameters.

Deep-learning-based variance parametrization: sfn | zn ∼ Nc(0, σ2
f (zn)).

. Training time: Learn the neural network parameters θs .

. Test time: Estimate the posterior distribution of z = {zn}N−1
n=0

. The variance is a non-linear function of zn ∈ RL (low-dimensional).

. Interpretable / non-linear / free number of trainable parameters.
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Learning the model parameters with variational autoencoders

. Training dataset of STFT speech time frames: s = {sn ∈ CF}N−1
n=0 .

. Problem:

. Learn the parameters θs of the generative model.

. Intractable likelihood p(s;θs).

. Solution: Variational autoencoders (Kingma and Welling 2014).

. Variational free energy L(φ,θs) ≤ ln p(s;θs):

L(φ,θs) = Eq(z|s;φ)

[
ln p (s|z;θs)

]
− DKL

(
q(z|s;φ) ‖ p(z)

)
, (12)

where z = {zn}N−1
n=0 and q(z|s;φ) is an approximation of p(z|s;θs).
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Variational distribution

q(z | s;φ) is defined independently for all time frames n ∈ {0, ...,N − 1}
and all latent dimensions l ∈ {0, ..., L− 1} by:

(zn)l | sn ∼ N
(
µ̃l
(
|sn|�2

)
, σ̃2

l

(
|sn|�2

) )
, (13)

where � denotes element-wise exponentiation;

Recognition network

φ denotes the weights

and the biases.
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Variational free energy

L (θs ,φ)
c
= −

F−1∑
f =0

Ntr−1∑
n=0

Eq(zn|sn;φ)

[
dIS

(
|sfn|2 ;σ2

f (zn)
)]

+
1

2

L∑
l=1

Ntr−1∑
n=0

[
ln σ̃2

l

(
|sn|�2

)
− µ̃l

(
|sn|�2

)2
− σ̃2

l

(
|sn|�2

)]
,

(14)

where dIS(x ; y) = x/y − ln(x/y)− 1 is the Itakura-Saito (IS) divergence.

. Intractable expectation approximated by a sample average

(“reparametrization trick” (Kingma and Welling 2014)).

. Differentiable with respect to both θs and φ (backpropagation).

. Optimized using gradient-ascent-based algorithm.
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Speech enhancement problem

. Mixture model: For all (f , n) ∈ B,

xfn =
√
gnsfn + bfn, (15)

where gn ∈ R+ is a gain parameter.

. Supervised2 speech model: Independently for all (f , n) ∈ B,

sfn | zn ∼ Nc(0, σ2
f (zn)), zn ∼ N (0, IL). (16)

. Unsupervised noise model: Independently for all (f , n) ∈ B,

bfn ∼ Nc

(
0, (WbHb)f ,n

)
, (17)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .
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Parameters estimation

. Unsupervised model parameters:

θu =
{

Wb ∈ RF×Kb
+ , Hb ∈ RKb×N

+ , g = [g0, ..., gN−1]> ∈ RN
+

}

. Observed data: x = {xfn ∈ C}(f ,n)∈B

Direct maximum likelihood estimation is intractable

. Latent data: z = {zn ∈ RL}N−1
n=0

. Expectation-maximization (EM) algorithm.
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Monte Carlo EM algorithm

. E-Step. From the current value of the parameters θ?u, compute:

Q(θu;θ?u) = Ep(z|x;θs ,θ?
u ) [ln p(x, z;θs ,θu)]

≈ 1

R

R∑
r=1

ln p
(

x, z(r);θs ,θu
)
, (18)

where the samples
{

z(r)
}
r=1,...,R

are asymptotically drawn from

p(z|x;θs ,θ
?
u) using a Markov chain Monte Carlo method.

. M-Step.

θ?u ← arg max
θu

Q(θu;θ?u), (19)

with θu = {Hb ∈ RKb×N
+ , Wb ∈ RF×Kb

+ , g ∈ RN
+}.
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+ , Wb ∈ RF×Kb

+ , g ∈ RN
+}.
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Speech estimation

Let s̃fn =
√
gnsfn be the scaled speech STFT coefficients.

Posterior mean estimation (Wiener-like filtering)

ˆ̃sfn = Ep(s̃fn|xfn;θs ,θu)[s̃fn]

= Ep(zn|xn;θs ,θu)

[
gnσ

2
f (zn)

gnσ2
f (zn) + (WbHb)f ,n

]
xfn. (20)

Intractable expectation → Markov chain Monte Carlo.
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Deep-learning-based priors for

single-channel speech enhancement

Experiments



Dataset

. Clean speech signals: TIMIT database .

. Noise signals: DEMAND database (domestic environment, nature,

office, indoor public spaces, street and transportation) .

. Training:

. training set of TIMIT database;

. ∼ 4 hours of speech;

. 462 speakers.

. Testing:

. 168 noisy mixtures at 0 dB signal-to-noise ratio;

. Different speakers and sentences than in the training set.
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Semi-supervised NMF baseline

Independently for all (f , n) ∈ B:

sfn ∼ Nc(0, (WsHs)f ,n) and bfn ∼ Nc(0, (WbHb)f ,n),

with Ws ∈ RF×Ks
+ , Hs ∈ RKs×N

+ , Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

. Training: Learn Ws from a dataset of clean speech signals.

. Test: Estimate Hs ,Wb,Hb from the noisy mixture signal.

. Speech reconstruction:

ŝfn =
(WsHs)f ,n

(WsHs + WbHb)f ,n
xfn

Related to (Smaragdis et al. 2007; Févotte et al. 2009)
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Fully-supervised deep-learning reference method (Xu et al. 2015)

. A deep neural network is trained to map noisy speech log-power

spectrograms to clean speech log-power spectrograms.

. From (Xu et al. 2015):

“to improve the generalization capability we in-

clude more than 100 different noise types in de-

signing the training set”

. We used a different noise database (with overlapping noise types) for

testing.
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Experimental results

Median value indicated above each boxplot.
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Experimental results

Median value indicated above each boxplot.
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Musical audio example

All models were trained on speech (not singing voice).
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Conclusion



Conclusion

Deep-learning-based generative models can be used as priors for

solving ill-posed inverse problems.

A flexible approach:

. Semi-supervision: mixing supervised and unsupervised models.

. Easy to adapt to other problems.

For example, multichannel extension sfn ∈ CI (submitted to ICASSP 2019):

zn ∼ N (0, I),

sfn | zn ∼ Nc

(
0, σ2

f (zn)︸ ︷︷ ︸
supervised

spectro-temporal
model

× Rs,f︸︷︷︸
unsupervised

spatial
model

)
. (21)

Spatial covariance matrix model from (Duong et al. 2010).
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Thank you

Audio examples and code available online:

https://sleglaive.github.io
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Polack, J.-D. (1988). “La transmission de l’énergie sonore dans les salles”. PhD thesis. Université du Maine.
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