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Bayesian and Deep Learning



Inverse problems

latent variables of interest observations

signals;

model parameters;

state of a system;

etc.

incomplete and/or noisy
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direct problem

inverse problem
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Ill-posed inverse problem: requires external information.
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Bayesian methodology vs deep learning

Bayesian methodology

External information: Prior p(latent)

Likelihood p(obs. | latent)

Problem solving: Posterior p(latent | obs.)

Advantages: Flexible, explanatory

Drawbacks: Performance, strong hypotheses

Discriminative deep learning approach

External information: Training data

Problem solving: Observations
neural−−−→

network
latent variables of interest

Advantages: State-of-the-art, fast at test time

Drawbacks: Poorly flexible once trained, poorly explanatory

How to exploit the best of both worlds?

Learn the prior directly from data using deep generative models.

4



Bayesian methodology vs deep learning

Bayesian methodology

External information: Prior p(latent)

Likelihood p(obs. | latent)

Problem solving: Posterior p(latent | obs.)

Advantages: Flexible, explanatory

Drawbacks: Performance, strong hypotheses

Discriminative deep learning approach

External information: Training data

Problem solving: Observations
neural−−−→

network
latent variables of interest

Advantages: State-of-the-art, fast at test time

Drawbacks: Poorly flexible once trained, poorly explanatory

How to exploit the best of both worlds?

Learn the prior directly from data using deep generative models.

4



Bayesian methodology vs deep learning

Bayesian methodology

External information: Prior p(latent)

Likelihood p(obs. | latent)

Problem solving: Posterior p(latent | obs.)

Advantages: Flexible, explanatory

Drawbacks: Performance, strong hypotheses

Discriminative deep learning approach

External information: Training data

Problem solving: Observations
neural−−−→

network
latent variables of interest

Advantages: State-of-the-art, fast at test time

Drawbacks: Poorly flexible once trained, poorly explanatory

How to exploit the best of both worlds?

Learn the prior directly from data using deep generative models.

4



Deep-learning-based generative models (with latent variables)

latent space

data space data space

generative

neural 

network

model distribution true data distribution

prior distribution

measure of fit

i.i.d samples

. Variational autoencoders (Kingma and Welling 2014)

. Generative adversarial networks (Goodfellow et al. 2014)
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Application: semi-supervised speech enhancement

noisy speech

signal

clean 

speech signal

Semi-supervised approach (Smaragdis et al. 2007):

� Training from clean speech signals only.

� Free of generalization issues regarding the noisy recording environment.

We want the method to be speaker independent.
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Speech Enhancement with

Non-negative Matrix Factorization



Speech enhancement as a source separation problem

noisy speech

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

=

clean speech

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

+

noise

0 0.5 1 1.5 2 2.5 3 3.5 4
time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

fre
qu

en
cy

 (H
z)

In the short-term Fourier transform (STFT) domain, we observe:

xfn = sfn + bfn, (1)

. sfn ∈ C is the clean speech signal.

. bfn ∈ C is the noise signal.

. (f , n) ∈ B = {0, ...,F − 1} × {0, ...,N − 1}.

. f is the frequency index and n the time-frame index.
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Non-stationary Gaussian model

. Non-stationary Gaussian model (Pham and Garat 1997; Cardoso 2001)

Independently for all (f , n) ∈ B:

sfn ∼ Nc(0, vs,fn) ⊥ bfn ∼ Nc(0, vb,fn). (2)

Consequently, we also have:

xfn ∼ Nc (0, vs,fn + vb,fn) . (3)

. Spectro-temporal variance modeling (Vincent et al. 2010; Vincent et al. 2014)

. persistence with structured sparsity penalties;

(Févotte et al. 2006; Kowalski and Torrésani 2009)

. redundancy with non-negative matrix factorization;

(Benaroya et al. 2003; Févotte et al. 2009; Ozerov et al. 2012)

. more complex structures with deep neural networks.

(Bando et al. 2018; Leglaive et al. 2018)
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Non-negative matrix factorization (NMF) (Lee and Seung 1999)

Low-rank matrix factorization technique with non-negativity constraints.

dictionary

matrix

activation

matrix

non-negative coe cients

data

matrix

Principal component analysis (PCA) is also a low-rank matrix factorization, with

different constraints.
9



NMF for face images (Lee and Seung 1999)

A face can be represented a linear combination of basis images.

. with NMF: localized features representing intuitive notions of parts of faces.

. with PCA: eigenfaces.

Reproduced from (Lee and Seung, 1999)
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NMF for audio spectrograms (Smaragdis and Brown 2003)

A spectrogram can be represented a linear combination of spectral templates.
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NMF-based variance modeling for audio (Févotte et al. 2009)

. Non-stationary Gaussian model:

sfn ∼ Nc(0, vs,fn) and bfn ∼ Nc(0, vb,fn). (4)

. Variance model based on non-negative matrix factorization (NMF):

vj,fn = (WjHj)f ,n , j ∈ {s, b}, (5)

. Wj ∈ RF×Kj
+ is a dictionary matrix of spectral templates;

. Hj ∈ RKj×N
+ is the activation matrix;

. Kj is the rank of the factorization (usually Kj(F + N)� FN).
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Semi-supervised NMF-based speech enhancement

(Smaragdis et al. 2007; Mysore and Smaragdis 2011)

Speech enhancement with Wiener filtering

ŝfn = Ep(sfn|xfn)[sfn] =
(WsHs)f ,n

(WsHs + WbHb)f ,n
xfn. (6)

Training: learn Ws from a dataset of clean speech signals

min
Ws≥0

∑
(f ,n)∈B

dIS

(
|sfn|2, (WsHs)f ,n

)
, (7)

. dIS(·, ·) is the Itakura-Saito (IS) divergence.

. equivalent to maximizing the likelihood of s = {sfn}(f ,n)∈B (Févotte et al. 2009).

. majorize-minimize algorithm (Févotte and Idier 2011).

Test: estimate Hs ,Wb,Hb from the noisy mixture signal

min
Hs ,Wb,Hb≥0

∑
(f ,n)∈B

dIS

(
|xfn|2, (WsHs + WbHb)f ,n

)
. (8)
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Research problem: from NMF to neural networks

NMF-based supervised speech model

vs,fn = (WsHs)f ,n = (Ws)>f ,: × (Hs):,n

Negative aspects:

. linear function of (Hs):,n ∈ RKs
+ .

. # trainable parameters = F×Ks .

Positive aspect:

. Interpretability.

In this work, we explore the use of neural networks in order to

overcome the limitations of this variance model.
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Speech Enhancement with Variational

Autoencoders

Deep Generative Speech Modeling



Deep generative speech model (Bando et al. 2018)

Independently for all (f , n) ∈ B,

sfn | zn ∼ Nc

(
0, σ2

f (zn)
)
, with zn ∼ N (0, IL), (9)

and σ2
f : RL 7→ R+ corresponds to a neural network of parameters θs .
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Learning the model parameters with variational autoencoders

. Training dataset of STFT speech time frames: s = {sn ∈ CF}N−1
n=0 .

. Associated latent variables: z = {zn ∈ RL}N−1
n=0 .

. Difficulty: Intractable marginal likelihood p(s;θs) =

∫
p(s|z;θs)p(z)dz.

. Solution: Variational autoencoder (VAE) (Kingma and Welling 2014).
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. Difficulty: Intractable marginal likelihood p(s;θs) =

∫
p(s|z;θs)p(z)dz.

. Solution: Variational autoencoder (VAE) (Kingma and Welling 2014).

Maximize a lower bound of ln p(s;θs), which can be recast as:

min
θs

∑
(f ,n)∈B

Eq(zn|sn;φ)

[
dIS
(
|sfn|2 ;σ2

f (zn)
) ]
, (10)

where q (zn|sn;φ) is an approximation of the intractable posterior p(zn|sn;θs)

and is defined by an “encoder network” of parameters φ.

The dependency of σ2
f (·) on θs is not made explicit to avoid cluttered notations.
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Variational inference (Jordan et al. 1999; Blei et al. 2017)

For any variational distribution q(z|s;φ), we have:

ln p(s;θs) = L(φ,θs) + DKL

(
q(z|s;φ) ‖ p(z|s;θs)

)
, (11)

where DKL

(
q ‖ p

)
= Eq[ln q − ln p] ≥ 0.

Variational free energy

L(φ,θs) = Eq(z|s;φ) [ln p (s|z;θs)]︸ ︷︷ ︸
reconstruction accuracy

−DKL (q(z|s;φ) ‖ p(z))︸ ︷︷ ︸
regularization

. (12)

Problem #1

max
θs

L(φ,θs)

where L(φ,θs) ≤ ln p(s;θs).

Problem #2

max
φ
L(φ,θs)

⇔
min
φ

DKL

(
q(z|s;φ) ‖ p(z|s;θs)

)
To define the objective function, we need to define q(z|s;φ).
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The encoder network

q(z|s;φ) is defined independently for all time frames n ∈ {0, ...,N − 1} and all

latent dimensions l ∈ {0, ..., L− 1} by:

(zn)l | sn ∼ N
(
µ̃l (sn) , σ̃2

l (sn)
)
, (13)

where µ̃l : CF 7→ R and σ̃2
l : CF 7→ R+ correspond to a neural network of

parameters φ.
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Variational free energy: full expression

L (θs ,φ)
c
= −

F−1∑
f =0

N−1∑
n=0

Eq(zn|sn;φ)

[
dIS

(
|sfn|2 ;σ2

f (zn)
)]

+
1

2

L∑
l=1

N−1∑
n=0

[
ln σ̃2

l (sn)− µ̃2
l (sn)− σ̃2

l (sn)
]
. (14)

. Intractable expectation replaced by a sample average:

Eq(zn|sn;φ)

[
dIS

(
|sfn|2 ;σ2

f (zn)
)]
≈ 1

R

R∑
r=1

[
dIS

(
|sfn|2 ;σ2

f

(
z̃(r)
n

))]
, (15)

where {z̃(r)
n }Rr=1 are i.i.d. realizations drawn1 from q (zn|sn;φ).

. In practice R = 1:

Eq(zn|sn;φ)

[
dIS

(
|sfn|2 ;σ2

f (zn)
)]
≈ dIS

(
|sfn|2 ;σ2

f (z̃n)
)
. (16)
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1using the so-called ”reparametrization trick” (Kingma and Welling 2014).
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Training procedure step by step (0)

L (θs ,φ)
c
= −

F−1∑
f =0

N−1∑
n=0

[
dIS

(
|sfn|2 ;σ2

f (z̃n)
)]

+
1

2

L∑
l=1

N−1∑
n=0

[
ln σ̃2

l (sn)− µ̃2
l (sn)− σ̃2

l (sn)
]
. (17)

20



Training procedure step by step (1)

L (θs ,φ)
c
= −

F−1∑
f =0

N−1∑
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dIS

(
|sfn|2 ;σ2
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+
1

2
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l (sn)
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Training procedure step by step (2)

L (θs ,φ)
c
= −

F−1∑
f =0

N−1∑
n=0

[
dIS

(
|sfn|2 ;σ2

f (z̃n)
)]

+
1

2
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l=1
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n=0

[
ln σ̃2

l (sn)− µ̃l
2 (sn)− σ̃2

l (sn)
]
. (19)
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Training procedure step by step (3)

L (θs ,φ)
c
= −

F−1∑
f =0

N−1∑
n=0

[
dIS

(
|sfn|2 ;σ2

f (z̃n)
)]

+
1

2

L∑
l=1

N−1∑
n=0

[
ln σ̃2

l (sn)− µ̃l
2 (sn)− σ̃2

l (sn)
]
. (20)
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Training procedure step by step (4)

L (θs ,φ)
c
= −

F−1∑
f =0

N−1∑
n=0

[
dIS

(
|sfn|2 ;σ2

f (z̃n)
)]

+
1

2

L∑
l=1

N−1∑
n=0

[
ln σ̃2

l (sn)− µ̃l
2 (sn)− σ̃2

l (sn)
]
. (21)

Iterative optimization with a gradient-ascent-based algorithm.
24



Summary

NMF-based model

vs,fn = (Ws)
>
f ,: × (Hs):,n

. linear function of (Hs):,n ∈ RKs
+ .

. # trainable parameters = F×Ks .

. IS divergence minimization.

. Interpretability.

VAE-based model

vs,fn = σ2
f (zn)

. non-linear function of zn ∈ RL.

. # trainable parameters is free.

. IS divergence minimization.

. Lack of (direct) interpretability.
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Speech Enhancement with Variational

Autoencoders

Speech Enhancement



Models for semi-supervised speech enhancement

Supervised speech model

sfn | zn ∼ Nc

(
0, σ2

f (zn)
)
, zn ∼ N (0, I), (22)

where σ2
f (·) corresponds to the decoder network of parameters θs .

Unsupervised noise model

bfn ∼ Nc

(
0, (WbHb)f ,n

)
, (23)

where Wb ∈ RF×Kb
+ and Hb ∈ RKb×N

+ .

Likelihood

xfn | zn ∼ Nc

(
0, σ2

f (zn) + (WbHb)f ,n

)
. (24)

S. L., L. Girin, R. Horaud “A variance modeling framework based on variational autoencoders for speech enhancement”, IEEE MLSP, 2018.
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Semi-supervised VAE-based speech enhancement

Speech enhancement with Wiener-like filtering

ŝfn = Ep(sfn|xfn;θ)[sfn] = Ep(zn|xn;θ)

[
σ2
f (zn)

σ2
f (zn) + (WbHb)f ,n

]
xfn, (25)

where the expectation is intractable: Markov chain Monte Carlo (MCMC).

Training: learn σ2
f (·) from a dataset of clean speech signals

Introduce an encoder network and maximize a lower bound of p(s;θs).

Test: estimate Wb,Hb from the noisy mixture signal

We would like to maximize w.r.t Wb ∈ RF×Kb
+ ,Hb ∈ RKb×N

+ :

p(x;θ) =

∫
p(x|z;θ)p(z)dz. (26)

We develop a Monte Carlo EM algorithm (see paper for further details).
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Speech Enhancement with Variational

Autoencoders

Experiments



Dataset

. Clean speech signals: TIMIT database (Garofolo et al. 1993).

. Noise signals: DEMAND database (domestic environment, nature, office,

indoor public spaces, street and transportation).

. Training:

. training set of TIMIT database;

. ∼ 4 hours of speech;

. 462 speakers.

. Test:

. 168 noisy mixtures at 0 dB signal-to-noise ratio;

. Different speakers and sentences than in the training set.
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Reference methods

1. Semi-supervised NMF baseline.

2. Fully-supervised deep-learning-based method (Xu et al. 2015):

. Deep neural network for mapping noisy speech log-power spectrograms to

clean speech log-power spectrograms.

. From (Xu et al. 2015):

“to improve the generalization capability we include

more than 100 different noise types in designing the

training set”

. Here, we use different noise datasets for training and testing (with

overlapping noise types).
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Experimental results

Median value indicated above each boxplot.
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Singing voice separation in a monophonic mixture

All models were trained on speaking and not singing voice.

mixture original voice

0 1 2 3 4 5 6
time (s)

0

1

2

3

4

5

6

7

8
fre

qu
en

cy
 (k

Hz
)

0 1 2 3 4 5 6
time (s)

0

1

2

3

4

5

6

7

8

fre
qu

en
cy

 (k
Hz

)

fully-supervised DNN semi-supervised NMF proposed

0 1 2 3 4 5 6
time (s)

0

1

2

3

4

5

6

7

8

fre
qu

en
cy

 (k
Hz

)

0 1 2 3 4 5 6
time (s)

0

1

2

3

4

5

6

7

8

fre
qu

en
cy

 (k
Hz

)

0 1 2 3 4 5 6
time (s)

0

1

2

3

4

5

6

7

8

fre
qu

en
cy

 (k
Hz

)

Song: “Sunrise” by Shannon Hurley, from the MGT Music Audio Signal Separation (MASS) dataset.
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Speech Enhancement with Variational

Autoencoders

Extensions



Alpha-stable noise model

Example noise signal recorded within an accelerating subway.

. Gaussian NMF-based noise model:
dictionary activations

1 10

1

10

original noise spectrogram reconstructed noise spectrogram

. Alpha-stable noise model:
impulse variablesnoise PSDreconstructed noise spectrogramoriginal noise spectrogram

S. L., U. Şimşekli, A. Liutkus, L. Girin, R. Horaud “Speech enhancement with variational autoencoders and alpha-stable distributions”, IEEE ICASSP,

2019.
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Multi-microphone recording setup

. A fully-supervised model would need to be retrained. We

might even need to collect new data.

. Our semi-supervised approach can be easily adapted to this

new configuration.

Multichannel speech model

Let sfn ∈ CI be the multichannel speech signal, we have:

sfn | zn ∼ Nc

(
0, σ2

f (zn)× Rs,f

)
, zn ∼ N (0, I), (27)

. σ2
f (·) is learned during the training stage.

. Rs,f is the spatial covariance matrix and is estimated at test time.

S. L., L. Girin, R. Horaud “Semi-supervised multichannel speech enhancement with variational autoencoders and non-negative matrix factorization ”,

IEEE ICASSP, 2019.
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Singing voice separation in a stereo mixture

The VAE model was trained on speaking and not singing voice.

Mixture Estimated voice Estimated accompaniment

Song: “Ana” by Vieux Farka Toure, from the MGT Music Audio Signal Separation (MASS) dataset.
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Audio-visual speech enhancement

The speech generative process is conditioned on visual information

of the lip region, which is invariant to the acoustic noise.

Mostafa Sadeghi, S. L., Xavier Alameda-Pineda, Laurent Girin, Radu Horaud “Audio-visual speech enhancement using conditional variational

auto-encoder”, submitted to IEEE Transactions on Audio, Speech and Language Processing, 2019.
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Recurrent deep generative speech model

Generate a sequence of speech STFT time frames from a sequence

of latent vectors.

s0

z0

s1

z1

s2

z2

(a) feed-forward NN

s0

z0

s1

z1

s2

z2

(b) recurrent NN

s0

z0

s1

z1

s2

z2

(c) bidirectional

recurrent NN

Recurrent models induce a temporal dynamic over the reconstructed

speech, with Wiener filtering.

S. L., X. Alameda-Pineda, L. Girin, R. Horaud “A recurrent variational autoencoder for speech enhancement ”, submitted to IEEE ICASSP, 2020.
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Conclusion



Conclusion

We combined the learning capabilities of neural

networks with the flexibility of probabilistic models

for speech enhancement.

. Variational autoencoders are more expressive than NMF models due to

their non-linear nature and due to the freedom in the number of trainable

parameters.

. Semi-supervised approaches are flexible and can easily adapt to different

situations at test time, in terms of noise and number of microphones.
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Future work

Some challenges that we would like to address:

. to account for phase information;

. to develop deep generative spatial models of multi-microphone signals;

. to encode multi-level and multi-time-scale properties of speech signals in

the deep generative process;

. to develop more efficient statistical inference algorithms.

Thank you for your attention

Audio examples and code:

https://sleglaive.github.io
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