Signaux aléatoires

Filtrage des processus SSL

Simon Leglaive

CentraleSupélec

Dans les épisodes précédents...

- Un processus aléatoire est une collection de variables aléatoires indexées par le temps. C'est une fonction de deux variables : l'aléa et le temps.
- Un processus aléatoire est complètement décrit par sa loi temporelle, et partiellement décrit par ses propriétés au second ordre.
- Un processus peut être stationnaire (au sens strict ou au sens large), ce qui simplifie grandement sa description statistique et son traitement.
- La propriété d'ergodicité ajoutée à celle de stationnarité permet de remplacer les moyennes statistiques par des moyennes temporelles.
- La notion de mesure / densité spectrale de puissance permet de caractériser un processus SSL dans le domaine spectral.

Au programme

- Pourquoi s'intéresser au filtrage?
- Rappels sur le filtrage des signaux déterministes
- Filtrage des processus SSL
- Modèle ARMA

Pourquoi s'intéresser au filtrage?

Amelie Lens Tomorrowland 2025 | MainStage Closing

Les **systèmes linéaires et invariants dans le temps** (SLIT) sont omniprésents dans notre vie quotidienne :

- **Télécoms** : Certains canaux de communication sont modélisés comme des SLIT, permettant la transmission fiable de la voix, des vidéos et des données.
- Électronique : Les circuits RLC, présents dans de nombreux appareils (radios, téléviseurs, smartphones), sont des SLIT classiques.
- Acoustique : La propagation du son dans une salle est modélisée comme un SLIT, ce qui permet d'optimiser l'acoustique des espaces (salles de concert, bureaux, etc.).
- **Biologie** : Le système de production de la parole chez l'être humain peut être localement modélisé comme un SLIT, ce qui est exploité dans la synthèse et la reconnaissance vocale.
- IA : Certaines couches de réseaux de neurones (notamment convolutives) sont inspirées des SLIT, et sont utilisées dans la reconnaissance d'images, de sons, etc.
- Automatique : Beaucoup de systèmes de commande (climatisation, régulateurs de vitesse dans les voitures, lave linge) sont des SLIT.

- Un SLIT est entièrement caractérisé par sa réponse impulsionnelle ou sa fonction de transfert.
- L'opération de **filtrage linéaire** permet de décrire mathématiquement l'action du SLIT sur un signal d'entrée.
- Vous avez déjà étudié tout cela dans le cours « Signaux et systèmes », pour le cas déterministe.
- Et si maintenant le signal d'entrée du SLIT est aléatoire ?

Réponse impulsionnelle, fonction de transfert

- Un filtre linéaire numérique est défini par une suite $\{h(t)\}_{t\in\mathbb{Z}}$ appelée **réponse impulsionnelle**. On suppose $h(t)\in\mathbb{R}$ pour tout t.
- Sa **fonction de transfert** est donnée par la transformée en z de h(t):

$$H(z) = \sum_{t \in \mathbb{Z}} h(t) z^{-t}.$$

Causalité, stabilité

- Le filtre est causal si et seulement si les conditions équivalentes suivantes sont vérifiées :
 - $h(t) = 0 \quad \forall t < 0$;
 - il existe $r \geq 0$ tel que H(z) converge à l'extérieur du disque de rayon r (i.e. pour |z| > r).
- Le filtre est stable (entrée bornée, sortie bornée) si les conditions équivalentes suivantes sont vérifiées :
 - lacksquare la réponse impulsionnelle est de module sommable, i.e., $\sum_{t\in\mathbb{Z}}|h(t)|<+\infty$;
 - ullet la région de convergence de H(z) contient le cercle unité (|z|=1).

Dans ce cas, la série H(z) converge pour toutes les fréquences ν et $H\left(e^{\imath 2\pi\nu}\right)$ est la TFTD de h(t).

Relation entrée / sortie

• La sortie y(t) du filtre appliqué à toute entrée x(t) est donnée par le **produit de convolution** de l'entrée avec la réponse impulsionnelle :

$$y(t) = [x\star h](t) = \sum_{k=-\infty}^{+\infty} h(t-k)x(k) = \sum_{k=-\infty}^{+\infty} h(k)x(t-k).$$

• Si X(z) et Y(z) sont les transformée en z de x(t) et y(t) alors on a :

$$Y(z) = H(z)X(z).$$

• Si le filtre est stable, $\hat{h}(\nu):=H\left(e^{\imath 2\pi\nu}\right)$ est bien définie, et si $\hat{x}(\nu)$ et $\hat{y}(\nu)$ sont les TFTD de x(t) et y(t) alors on a :

$$\hat{y}(
u) = \hat{h}(
u)\hat{x}(
u).$$

Filtres à réponse impulsionnelle infinie

 De façon générale, un filtre à réponse impulsionnelle infinie est décrit par une fonction de transfert sous forme de fraction rationnelle :

$$H(z) = rac{B(z)}{A(z)} = rac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_Q z^{-Q}}{1 + a_1 z^{-1} + a_2 z^{-2} + \cdots + a_P z^{-P}}.$$

• Le filtre est décrit dans le domaine temporel par une équation récurrente linéaire :

$$y(t) = -\sum_{k=1}^P a_k \, y(t-k) + \sum_{k=0}^Q b_k \, x(t-k)$$

• Le filtre est causal et stable si et seulement si les pôles sont strictement à l'intérieur du cercle unité, càd $A(z) \neq 0$ pour $|z| \geq 1$.

Filtres à réponse impulsionnelle infinie (suite)

- On peut montrer que y(t), solution de l'équation récurrente ci-dessus, s'écrit comme la convolution de x(t) avec une réponse impulsionnelle h(t) de support infini.
- Notons enfin que si les coefficients de l'équation récurrente sont réels :
 - la réponse impulsionnelle est réelle ;
 - la fonction de transfert vérifie $H(z)=H^*(z^*)$ et la réponse en fréquence $\hat{h}(
 u)=\hat{h}^*(u)$ (symétrie hermitienne) ;
 - les numérateur et dénominateur de H(z) sont des polynômes à coefficients réels, et donc les pôles et ses zéros sont soit réels, soit vont par pair de complexes conjugués.

Forme factorisée

La fonction de transfert précedente peut s'écrire sous forme factorisée :

$$H(z) = b_0 \cdot rac{(1-z_1 z^{-1})(1-z_2 z^{-1})\cdots (1-z_Q z^{-1})}{(1-p_1 z^{-1})(1-p_2 z^{-1})\cdots (1-p_P z^{-1})}$$

où

- z_1, z_2, \ldots, z_Q sont appelés les **zéros** du filtre, ce sont les racines du numérateur ;
- p_1, p_2, \ldots, p_P sont appelés les **pôles** du filtre, ce sont les racines du dénominateur.

Filtres à réponse impulsionnelle finie

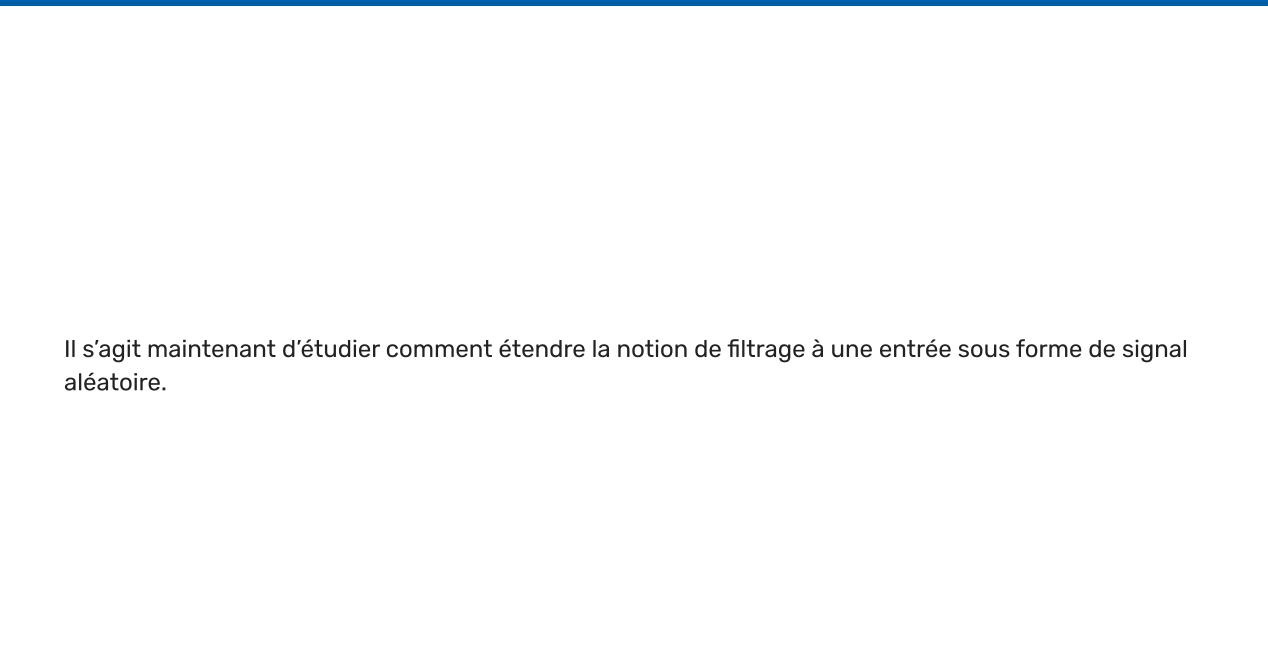
- Un filtre à réponse impulsionnelle finie est un filtre dont la réponse impulsionnelle h(t) est de support fini : h(t)=0 pour tout $t \notin [0,Q]$ avec Q l'ordre du filtre.
- Sa fonction de transfert est un polynôme en z^{-1} :

$$H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_Q z^{-Q}$$

Le filtre est décrit dans le domaine temporel par

$$y(t) = \sum_{k=0}^Q b_k \, x(t-k).$$

• Le filtre est toujours **stable** (la réponse impulsionnelle est de module sommable), il est **causal** si h(t) = 0 pour t < 0, et il est facile à implémenter (pas de rétroaction).



Filtrage de processus SSL

- Soit $\{X(t)\}_{t\in\mathbb{Z}}$ un processus aléatoire **stationnaire au sens large** (SSL) de moyenne m_X , de fonction d'autocovariance $R_{XX}(k)$, et de mesure spectrale $\mu_{XX}(\nu)$.
- Soit $\{Y(t)\}_{t\in\mathbb{Z}}$ le processus obtenu par filtrage de $\{X(t)\}_{t\in\mathbb{Z}}$ par un filtre de réponse impulsionnelle $\{h(t)\}_{t\in\mathbb{Z}}$.

Comme précédemment, nous avons la relation entrée / sortie suivante :

$$Y(t) = [X\star h](t) = \sum_{k=-\infty}^{+\infty} h(t-k)X(k) = \sum_{k=-\infty}^{+\infty} h(k)X(t-k)$$

• Une condition suffisante pour que la somme ci-dessus existe est que $\{h(t)\}_{t\in\mathbb{Z}}$ soit de module sommable, c'est-à-dire :

$$\sum_{t\in\mathbb{Z}}|h(t)|<+\infty.$$

Propriétés (1/3)

On peut montrer que (voir exercices TD):

- Le processus $\{Y(t)\}_t$ est SSL.
- La moyenne de $\{Y(t)\}_t$ vérifie

$$m_Y = m_X \sum_{k=-\infty}^{+\infty} h(k).$$

• La fonction d'autocovariance de $\{Y(t)\}_t$ vérifie :

$$R_{YY}(k) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} h(i)h(j)^* R_{XX}(k+j-i).$$

Propriétés (2/3)

• Soit $\hat{h}(
u)$ la TFTD de h(t). La mesure spectrale $\mu_{YY}(
u)$ de $\{Y(t)\}_t$ vérifie :

$$\mu_{YY}(
u)=|\hat{h}(
u)|^2\mu_{XX}(
u).$$

• L'égalité précédente est à comprendre au sens des mesures, où pour tout ensemble mesurable $A\subseteq [-0.5,0.5]$,

$$\mu_{YY}(A) = \int_A d\mu_{YY}(
u) = \int_A |\hat{h}(
u)|^2 d\mu_{XX}(
u).$$

• En particulier, si $\{X(t)\}_t$ possède une DSP notée $S_{XX}(
u)$, $\{Y(t)\}_t$ possède également une DSP donnée par

$$S_{YY}(
u)=|\hat{h}(
u)|^2S_{XX}(
u).$$

Propriétés (3/3)

• Soit $C_{hh}(t)$ la convolution de la réponse impulsionnelle du filtre avec son retourné temporel conjugué $\tilde{h}(t)=h^*(-t)$:

$$C_{hh}(t) = [h\star ilde{h}](t) = \sum_{j=-\infty}^{+\infty} h(j)h^*(j-t).$$

ullet On peut montrer que R_{YY} se réécrit comme la convolution de R_{XX} avec C_{hh} :

$$R_{YY}(k) = \sum_{j=-\infty}^{+\infty} R_{XX}(j) C_{hh}(k-j) = [R_{XX} \star h \star ilde{h}](k).$$

• En appliquant le théorème de Wiener-Khinchin et grâce aux propriétés de la TFTD, on en déduit que :

$$S_{YY}(
u)=|\hat{h}(
u)|^2S_{XX}(
u).$$