
Gaussian mixture model estimation with the EM
algorithm

Image credit: Bayesian Learning for Signal Processing, Antoine Deleforge, LVA/ICA 2015 Summer School.

On Tuesday October 7, 1949, Thomas Bayes is going to visit Oxford University. Upon arriving at the university,
three prankster students throw dozens of small stones at him from the roof. Bayes wants to know which student
has thrown which stone. Determined, he begins to note the 2D position of each single stone on the ground.

(500, 2)

Theoretical work

Generative model

In [28]:
import numpy as np

import scipy as sp

from scipy.stats import norm

from scipy.stats import multivariate_normal

import matplotlib

import matplotlib.pyplot as plt

from gmm_tools import plot_GMM, plot_data, generate_Bayes_adventures_data

np.random.seed(0)

In [29]:
N = 500 # number of samples (number of stones)

D = 2 # number of dimensions (x and y coordinates)

gen = generate_Bayes_adventures_data(N, D)

x = gen[-1]

plot_data(x)

print(x.shape)

https://members.loria.fr/ADeleforge/files/bayesian_inference_electronic.pdf

For his investigation, Thomas Bayes defines the generative process of the observed data as follows:

He observes a realization of a set of observed random variables denoted by , where
 corresponds to the 2D position of the -th stone.

These observations are generated from a set of latent unobserved random variables denoted by
, where denotes the identity of the student (among students) who

threw the -th stone.

The relationships between the latent and observed variables are defined by their joint distribution, also called
complete-data likelihood:

where .

The prior over the latent variables follows a categorical distribution:

The likelihood is Gaussian:

with

The set of unknown deterministic model parameters is defined by:

The complete-data log-likelihood is therefore given by:

Posterior inference

Exercise 1

Question 1.1

Give the expression of the responsabilities .

Question 1.2

x = {xn ∈ R
2}N

n=1

xn n

z = {zn ∈ {1, . . . ,K}}N
n=1 zn K = 3

n

p(x, z; θ) =
N

∏
n=1

p(xn|zn; θ)p(zn; θ)

=
N

∏
n=1

K

∏
k=1

(p(xn|zn = k; θ)p(zn = k; θ))1{zn=k},

1{zn = k} = {
1 if zn = k

0 otherwise

p(zn = k; θ) = πk, k ∈ {1, . . . ,K}, with πk > 0 and
K

∑
k=1

= 1.

p(xn|zn = k; θ) = N (xn; μk, Σk),

N (x; μ, Σ) = exp(− (x − μ)T
Σ

−1(x − μ)).
1

√det(2πΣ)

1

2

θ = {πk, μk, Σk}K
k=1.

ln p(x, z; θ) =
N

∑
n=1

K

∑
k=1

1{zn = k} (lnπk + lnN (xn; μk, Σk)) .

rn,k ≜ p(zn = k|xn; θ)

https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

How can you interpret the responsabilities?

Question 1.3

In order to compute the responsabilities, it is necessary to estimate the unknown model parameters . To do so,
we would like to maximize the log-marginal likelihood . Give its expression and explain why it cannot
be directly optimized.

Expectation-Maximization algorithm
As direct maximum log-marginal likelihood estimation is intractable, we will derive an expectation-maximization
(EM) algorithm.

Exercise 2
Question 2.1

Let denote the current estimate of the model parameters. Using the above definition of the complete-data log-
likelihood, solve the E-step, that is compute the so-called -function, defined by:

Make the depency on the model parameters explicit (any constant with respect to

these parameters can be omitted).

Hints:

The expectation of a sum is the sum of the expectations.
 for any arbitrary function ;

.

Question 2.2

You now have to solve the M-step, that is updating the model parameters by maximizing with respect

to (w.r.t) . To do so, you will simply cancel the partial derivatives of w.r.t , and .

Useful matrix derivation formulas can be found in the appendix at the end of this notebook, or in the Matrix
Cookbook.

Question 2.2a

Compute the partial derivative of w.r.t and set it to zero to get the update of .

You will express the update as a function of . If we interpret as being equal to 1 if

belongs to component and 0 otherwise, corresponds to the number of points assigned to cluster .

Hint: is a covariance matrix so it is symetric.

Question 2.2b

θ

ln p(x; θ)

~
θ

Q

Q(θ,
~
θ) = E

p(z|x;
~
θ)[ln p(x, z; θ)]

θ = {πk, μk, Σk}K
k=1

E
p(z|x;

~
θ)[f(zn)] = E

p(zn|xn;
~
θ)[f(zn)] f

E
p(zn|xn;

~
θ)[1{zn = k}] =

K

∑
j=1

1{zn = k}p(zn = j|xn;
~
θ) = p(zn = k|xn;

~
θ) = ~rn,k

Q(θ,
~
θ)

θ Q(θ,
~
θ) μk Σk πk

Q(θ,
~
θ) μk μk

∇μk
Q(θ,

~
θ) =

Nk = ∑N

n=1
~rn,k

~rn,k xn

k Nk k

Σk

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Compute the partial derivative of w.r.t and set it to zero to get the update of .

You will express the update as a function of .

Hint: Use the trace trick: and then refer to the matrix derivation
formulas in the appendix.

Question 2.2c

The update for is obtained by maximizing under the constraint that . We obtain:

where . The optimal prior probablity is thus given by the number of points

 in cluster divided by the total number of points .

To obtain this expression you have to use the method of Lagrange multipliers:

you first cancel the partial derivative of the following Lagrangian w.r.t :

then you simply inject this solution into the constraint to find out the solution for .

Practical work

Q(θ,
~
θ) Σk Σk

∇Σk
Q(θ,

~
θ) =

Nk = ∑N

n=1
~rn,k

x
⊤

Σ
−1

x = tr(x
⊤

Σ
−1

x) = tr(Σ
−1

xx
⊤)

πk Q(θ,
~
θ) ∑K

k=1 πk = 1

πk = Nk/N,

Nk = ∑N

n=1
~rn,k p(zn = k) = πk

Nk k N

πk

L(θ,
~
θ ,λ) = Q(θ,

~
θ) + λ(

K

∑
k=1

πk − 1) .

λ

In []:
class GMM():

 """

 Gaussian mixture model

 """

 def __init__(self, n_comp, data_dim=2, seed=None):

 super(GMM, self).__init__()

 self.n_comp = n_comp

 self.data_dim = 2

 self.init_param(seed=seed)

 def init_param(self, pis=None, means=None, covars=None, seed=None):

 """

 Initialize the model parameters using the provided arguments

 or randomly.

 Inputs

 pis: list of prior probabilities, length equal to self.n_comp

 means: list of GMM means, length equal to self.n_comp

 covars: list of GMM means, length equal to self.n_comp

 Outputs

 None

 """

 if seed is not None:

 np.random.seed(seed)

https://math.stackexchange.com/questions/1761198/proof-on-trace-trick
https://en.wikipedia.org/wiki/Lagrange_multiplier

 if pis is not None:

 self.pis = pis

 else:

 self.pis = []

 for k in np.arange(self.n_comp):

 # prior set to 1/K

 self.pis.append(1/self.n_comp)

 if means is not None:

 self.means = means

 else:

 self.means = []

 for k in np.arange(self.n_comp):

 # mean vector drawn from a centered unit Gaussian

 mean = np.random.randn(self.data_dim)

 self.means.append(mean)

 if covars is not None:

 self.covars = covars

 else:

 self.covars = []

 for k in np.arange(self.n_comp):

 # identity covariance

 covar = np.eye(self.data_dim)

 self.covars.append(covar)

 if seed is not None:

 np.random.seed()

 def fit(self, data, n_iter=50):

 """

 Fit a GMM with the EM algorithm

 Inputs

 data (number of points, dimension) array

 n_iter

 Outputs

 log-marginal likelihood

 """

 LML = []

 for iter in np.arange(n_iter):

 resp = self.E_step(data)

 self.M_step(data, resp)

 LML.append(self.compute_LML(data))

 return LML

 def E_step(self, data):

 """

 Compute the responsabilities

 Inputs

 data (number of points, dimension) array

 Outputs

 responsabilities (number of points, number of GMM components)

 """

 N = data.shape[0]

 resp = np.zeros((N,self.n_comp))

The GMM class defined in the previous cell implements a Gaussian mixture model. It has two important
methods:

init_param() initializes the model parameters

 ###### TO COMPLETE ######

 # Use the static method GMM.compute_pdf_multi_gaussian() defined below

 #########################

 return resp

 def M_step(self, data, resp):

 """

 Update the model parameters

 Inputs

 data: (number of points, dimension) array

 Outputs

 None

 """

 ###### TO COMPLETE ######

 pass

 #########################

 def compute_LML(self, data):

 """

 Compute the log-marginal likelihood

 Inputs

 data: (number of points, dimension) array

 Outputs

 log-marginal likelihood

 """

 LML = 0

 ###### TO COMPLETE ######

 # Use the static method GMM.compute_pdf_multi_gaussian() defined below

 #########################

 return LML

 @staticmethod

 def compute_pdf_multi_gaussian(data, mean, covar):

 """

 Compute the pdf of a multivariate Gaussian distribution

 Inputs

 data: data points to evaluate the pdf (number of points, dimension) array

 mean: mean vector (dimension,) array

 covar: covariance matrix (dimension, dimension) array

 Outputs

 pdf evaluated on 'data', (number of points,) array

 """

 rv = multivariate_normal(mean, covar)

 return rv.pdf(data)

fit() runs the EM algorithm to estimate the model parameters. It alternates between the E- and M-
steps, and after each iteration it computes the log-marginal likelihood.

In the following cell, we instantiate this class for our problem.

Exercise 3

Exercise 3.1

Complete the method that computes the log-marginal likelihood (LML) and run the following cell.

The LML is defined as a sum over the data points. You will divide this sum by the number of data points, so that
the value of the objective function does not depend on the size of the dataset. In other words, compute the
mean instead of the sum.

Exercise 3.2

Complete the method that computes the E-step and run the following cell.

To assign each point to each cluster, we simply look at the argmax of the reponsabilities. Run the following cell.

Can you explain what you observe?

Exercise 3.3

Complete the method that computes the M-step and run the following cell.

Hint: Updating the covariance matrix requires computing the outer product of vectors. Look at the notebook
numpy new axis trick to help you.

In []:
gmm = GMM(n_comp=3, data_dim=2, seed=2)

In []:
LML_init = gmm.compute_LML(x)

print("log-marginal likelihood: %.4f" % LML_init)

if int(LML_init*1000) == -22548:

 print("so far, it seems to be ok")

else:

 print("argh, this is not the expected result, either you made a mistake, or my unit te

In []:
resp = gmm.E_step(x)

if np.sum(resp) == N:

 print("so far, it seems to be ok")

else:

 print("argh, this is not the expected result, either you made a mistake, or my unit te

In []:
z_hat = np.argmax(resp, axis=1)

fig1 = plt.figure(figsize=(10,4))

ax1 = fig1.add_subplot(111)

plot_GMM(x, z_hat, gmm.means, gmm.covars, colors=['b','g','r'], ax=ax1)

ax1.set_title('estimation')

In []:
gmm.M_step(x, resp)

If you got all my encouraging messages, then you are ready to fit the GMM on the data!

In the following cell, we plot the log-marginal likelihood along the iterations. It should be monotonically
increasing, a nice feature of the EM algorithm which is very useful for debugging: if the log-marginal likelihood
decreases, there is a bug.

Let's have a look to the results.

We used synthetic data, so we actually also know the true model parameters.

This is not perfect, but not that bad either...

Exercise 3.4

Question 3.4.1 - Re-run the complete pipeline several times after changing the random seed that is used to
instantiate the GMM. Explain what you observe and propose a method to choose the best model among the
ones you obtained from several runs.

Question 3.4.2 - Briefly explain the commonalities and differences between the K-means algorithm and the EM
algorithm for the GMM model. You can use different sources of information, e.g.

Wikipedia
Stackexchange
ChatGPT

In []:
LML = gmm.compute_LML(x)

delta_LML = LML - LML_init

print("log-marginal likelihood: %.4f" % LML)

print("log-marginal likelihood improvement: %.4f" % delta_LML)

if int(delta_LML*1000) == 19556:

 print("\nthe log-marginal likelihood increased, well done!")

else:

 print("argh, this is not the expected result, either you made a mistake, or my unit te

In []:
LML = gmm.fit(data=x, n_iter=50)

In []:
plt.plot(LML)

plt.title("log-marginal likelihood")

plt.xlabel("EM iterations")

In []:
resp = gmm.E_step(x)

z_hat = np.argmax(resp, axis=1)

fig1 = plt.figure(figsize=(10,4))

ax1 = fig1.add_subplot(111)

plot_GMM(x, z_hat, gmm.means, gmm.covars, colors=['b','g','r'], ax=ax1)

ax1.set_title('estimation')

In []:
(pis_true, means_true, covars_true, z_true, _) = gen

fig2 = plt.figure(figsize=(10,4))

ax2 = fig2.add_subplot(111)

plot_GMM(x, z_true, means_true, covars_true, colors=['b','g','r'], ax=ax2)

ax2.set_title('ground truth')

https://en.wikipedia.org/wiki/K-means_clustering#Gaussian_mixture_model
https://stats.stackexchange.com/a/489537
https://chat.openai.com/

Christopher M. Bishop's PRML book

It is your responsability to assess the reliability of the information you can find on the Internet.

Question 3.4.3 - Ask ChatGPT to complete the code below to perform image segmentation with the EM
algorithm for the GMM model, using 3 clusters. You may need to install scikit-learn, if you don't want, ask
ChatGPT to not use this package, but the code will be much longer and more difficult to read. Explain in one
sentence how this image segmentation method works and explain what you observe in the result.

Appendix
For , the gradient is defined by .

Below are some useful derivatives:

In []:
import matplotlib.pyplot as plt

import numpy as np

from sklearn.mixture import GaussianMixture

Load the grayscale image using matplotlib (it supports only PNG by default)

image = plt.imread('beatles_BW.jpg') # Replace with your grayscale image path

Display the image

plt.imshow(image, cmap='gray') # Choose a colormap appropriate for visualization

plt.axis('off')

plt.show()

f : RI×J ↦ R f(X) = ∇Xf(X) = [f(X)]ij
d

dX

∂
∂Xij

= = a (1)
∂x

T
a

∂x

∂a
T

x

∂x

= 2Ax, if A is symmetric (2)
∂x

T
Ax

∂x

tr(AX
T) = A (3)

∂

∂X

tr(AX) = A
T (4)

∂

∂X

tr(X
−1

A) = −(X
−1

AX
−1)T (5)

∂

∂X

ln det(X) = ((X
T)−1)

T
(6)

∂

∂X

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

