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Bayesian inference for the Gaussian
Let x = {xi ∈ R}Ni=1 denote a set ofN independent and identically distributed (i.i.d) observations following
a Gaussian distribution with mean µ ∈ R and variance σ2 ∈ R∗

+.

Part 1: We first consider the mean µ and the variance σ2 as deterministic parameters.

Question 1 Why can we factorize the likelihood as in equation (1)?

p(x;µ, σ2) =

N∏
i=1

p(xi;µ, σ
2), where p(xi;µ, σ2) = N (xi;µ, σ

2). (1)

Question 2 Using the probability density function (pdf) of the Gaussian distribution defined in equation
(6) of the appendix, show that the maximum-likelihood estimates of the mean and variance are given by:

µML =
1

N

N∑
i=1

xi; (2)

σ2
ML =

1

N

N∑
i=1

(xi − µML)2. (3)

Part 2: We now consider the mean µ as a latent random variable following a Gaussian prior distribution
p(µ) = N (µ;µ0, σ

2
0) where µ0 and σ2

0 are considered as deterministic hyper-parameters.1

The likelihood model is unchanged, i.e. p(x | µ;σ2) =
∏N
i=1N (xi;µ, σ

2), where the conditioning bar ‘|’
indicates that µ is now a random variable. The variance σ2 is still considered as a deterministic parameter.

Question 3 Show that the posterior distribution of µ is given by equation (4).

p(µ | x;σ2) = N (µ;µ?, σ
2
?), where


µ? =

σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML

1

σ2
?

=
1

σ2
0

+
N

σ2

, (4)

1To simplify notations, we omit to denote the hyper-parameters in the prior, i.e. we simply write p(µ) instead of p(µ;µ0, σ2
0).
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where µML is defined in (2).

Question 5 Give the limit of µ? and σ2
? when the number of observations N goes to zero and interpret the

result.

Question 6 Give the limit of µ? and σ2
? when the number of observations N goes to infinity and interpret

the result.

Part 3: We consider now that the mean µ is again a deterministic parameter while the variance is a latent
random variable following an inverse-gamma prior distribution p(σ2) = IG(σ2;α, β) where α and β are
deterministic hyper-parameters.

The likelihood model is unchanged, i.e. p(x | σ2;µ) =
∏N
i=1N (xi;µ, σ

2), where the conditioning bar ‘|’
indicates that σ2 is now a random variable, while again, the mean µ is still considered as a deterministic
parameter.

Question 7 Show that the posterior distribution of σ2 is given by equation (5).

p(σ2 | x;µ) = IG(σ2;α?, β?), where


α? = α+

N

2

β? = β +
1

2

N∑
i=1

(xi − µ)2
. (5)

Note: Use the probability density functions defined in the appendix.

Question 8 Explain how we could estimate the deterministic model parameters µ, α and β?

Appendix
Gaussian distribution The probability density function (pdf) of the Gaussian distribution is given by

N (x;µ, σ2) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
, (6)

where x ∈ R is the Gaussian random variable, µ = E[x] ∈ R is the mean and σ2 = E[(x − µ)2] ∈ R∗
+ is

the variance.

Inverse-Gamma distribution The probability density function (pdf) of the inverse-gamma distribution is
given by

IG(x;α, β) =
βα

Γ(α)
x−(α+1) exp

(
−β
x

)
, (7)

where x ∈ R∗
+ is the inverse-gamma random variable, α ∈ R∗

+ and β ∈ R∗
+ are the shape and scale param-

eters, respectively, and Γ(·) is the Gamma function (you do not need its definition).
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Moreover, we have the following properties:

E[x−1] = α/β, (8)
E[ln(x)] = ln(β)− ψ(α), (9)

(10)

where ψ(·) is the digamma function (you do not need its definition).
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