Bayesian Methods for Machine Learning

Simon Leglaive - CentraleSupélec

Bayesian inference for the Gaussian

Let $\mathbf{x} = \{x_i \in \mathbb{R}\}_{i=1}^N$ denote a set of N independent and identically distributed (i.i.d) observations following a Gaussian distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 \in \mathbb{R}_+^*$.

Part 1: We first consider the mean μ and the variance σ^2 as deterministic parameters.

Question 1 Why can we factorize the likelihood as in equation (1)?

$$p(\mathbf{x};\mu,\sigma^2) = \prod_{i=1}^{N} p(x_i;\mu,\sigma^2), \quad \text{where } p(x_i;\mu,\sigma^2) = \mathcal{N}(x_i;\mu,\sigma^2).$$
(1)

Question 2 Using the probability density function (pdf) of the Gaussian distribution defined in equation (6) of the appendix, show that the maximum-likelihood estimates of the mean and variance are given by:

$$\mu_{\rm ML} = \frac{1}{N} \sum_{i=1}^{N} x_i;$$
 (2)

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{\rm ML})^2.$$
(3)

Part 2: We now consider the mean μ as a latent random variable following a Gaussian prior distribution $p(\mu) = \mathcal{N}(\mu; \mu_0, \sigma_0^2)$ where μ_0 and σ_0^2 are considered as deterministic hyper-parameters.¹

The likelihood model is unchanged, i.e. $p(\mathbf{x} \mid \mu; \sigma^2) = \prod_{i=1}^N \mathcal{N}(x_i; \mu, \sigma^2)$, where the conditioning bar '|' indicates that μ is now a random variable. The variance σ^2 is still considered as a deterministic parameter.

Question 3 Show that the posterior distribution of μ is given by equation (4).

$$p(\mu \mid \mathbf{x}; \sigma^2) = \mathcal{N}(\mu; \mu_\star, \sigma_\star^2), \quad \text{where} \begin{cases} \mu_\star &= \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \mu_{\mathrm{ML}} \\ \frac{1}{\sigma_\star^2} &= \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2} \end{cases}, \quad (4)$$

¹To simplify notations, we omit to denote the hyper-parameters in the prior, i.e. we simply write $p(\mu)$ instead of $p(\mu; \mu_0, \sigma_0^2)$.

where μ_{ML} is defined in (2).

Question 5 Give the limit of μ_{\star} and σ_{\star}^2 when the number of observations N goes to zero and interpret the result.

Question 6 Give the limit of μ_{\star} and σ_{\star}^2 when the number of observations N goes to infinity and interpret the result.

Part 3: We consider now that the mean μ is again a deterministic parameter while the variance is a latent random variable following an inverse-gamma prior distribution $p(\sigma^2) = \mathcal{IG}(\sigma^2; \alpha, \beta)$ where α and β are deterministic hyper-parameters.

The likelihood model is unchanged, i.e. $p(\mathbf{x} \mid \sigma^2; \mu) = \prod_{i=1}^N \mathcal{N}(x_i; \mu, \sigma^2)$, where the conditioning bar '|' indicates that σ^2 is now a random variable, while again, the mean μ is still considered as a deterministic parameter.

Question 7 Show that the posterior distribution of σ^2 is given by equation (5).

$$p(\sigma^2 \mid \mathbf{x}; \mu) = \mathcal{IG}(\sigma^2; \alpha_\star, \beta_\star), \quad \text{where} \begin{cases} \alpha_\star &= \alpha + \frac{N}{2} \\ \beta_\star &= \beta + \frac{1}{2} \sum_{i=1}^N (x_i - \mu)^2 \end{cases}.$$
(5)

Note: Use the probability density functions defined in the appendix.

Question 8 Explain how we could estimate the deterministic model parameters μ , α and β ?

Appendix

Gaussian distribution The probability density function (pdf) of the Gaussian distribution is given by

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],\tag{6}$$

h T

where $x \in \mathbb{R}$ is the Gaussian random variable, $\mu = \mathbb{E}[x] \in \mathbb{R}$ is the mean and $\sigma^2 = \mathbb{E}[(x - \mu)^2] \in \mathbb{R}^*_+$ is the variance.

Inverse-Gamma distribution The probability density function (pdf) of the inverse-gamma distribution is given by

$$\mathcal{IG}(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp\left(-\frac{\beta}{x}\right),\tag{7}$$

where $x \in \mathbb{R}^*_+$ is the inverse-gamma random variable, $\alpha \in \mathbb{R}^*_+$ and $\beta \in \mathbb{R}^*_+$ are the shape and scale parameters, respectively, and $\Gamma(\cdot)$ is the Gamma function (you do not need its definition).

Moreover, we have the following properties:

$$\mathbb{E}[x^{-1}] = \alpha/\beta,\tag{8}$$

$$\mathbb{E}[x^{-1}] = \alpha/\beta, \tag{8}$$
$$\mathbb{E}[\ln(x)] = \ln(\beta) - \psi(\alpha), \tag{9}$$

(10)

where $\psi(\cdot)$ is the digamma function (you do not need its definition).