photo

Simon Leglaive

Assistant Professor
CentraleSupélec, IETR (UMR CNRS 6164)

simon.leglaive@centralesupelec.fr
+33 (0)2 99 84 45 82
CentraleSupélec - Rennes Campus
Avenue de la Boulaie
CS 47601
F-35576 Cesson-Sévigné Cedex
Google Scholar
Twitter

Machine learning, signal and image processing

This page includes material of the "Machine learning, signal and image processing" introductory course in the 3rd-year option "Numérique et Vivant" at CentraleSupélec. This course is given with Clément Elvira.

Agenda

Teacher Type Title
C. Elvira Applied course Introductory course: the problem ingredients and the subspace model
S. Leglaive Applied course Common signal representations
S. Leglaive Lecture Use cases in audio and speech processing
S. Leglaive Lab LPC and the source-filter model of speech production
C. Elvira Lecture The sparse model
C. Elvira Applied course Representation learning and principal component analysis
C. Elvira Lab Super-resolution in fluorescence microscopy
S. Leglaive Lecture Project monitoring + ML: modeling, inference, learning (I)
S. Leglaive Lecture ML: modeling, inference, learning (II)
S. Leglaive Lab Gaussian mixture model estimation with the EM algorithm
S. Leglaive Lecture ML: supervised discriminative learning
S. Leglaive Lab Multinomial logistic regression

Common signal representations

Use cases in audio and speech processing

Linear predictive coding and the source-filter model of speech production

ML: modeling, inference, learning

Gaussian mixture model estimation with the EM algorithm

ML: supervised discriminative learning

Multinomial logistic regression