Assistant Professor
CentraleSupélec, IETR (UMR CNRS 6164)
simon.leglaive@centralesupelec.fr
+33 (0)2 99 84 45 82
CentraleSupélec - Rennes Campus
Avenue de la Boulaie
CS 47601
F-35576 Cesson-Sévigné Cedex
Google Scholar
Twitter
This page includes material of the "Machine learning, signal and image processing" introductory course in the 3rd-year option "Numérique et Vivant" at CentraleSupélec. This course is given with Clément Elvira.
Teacher | Type | Title |
C. Elvira | Applied course | Introductory course: the problem ingredients and the subspace model |
S. Leglaive | Applied course | Common signal representations |
S. Leglaive | Lecture | Use cases in audio and speech processing |
S. Leglaive | Lab | LPC and the source-filter model of speech production |
C. Elvira | Lecture | The sparse model |
C. Elvira | Applied course | Representation learning and principal component analysis |
C. Elvira | Lab | Super-resolution in fluorescence microscopy |
S. Leglaive | Lecture | Project monitoring + ML: modeling, inference, learning (I) |
S. Leglaive | Lecture | ML: modeling, inference, learning (II) |
S. Leglaive | Lab | Gaussian mixture model estimation with the EM algorithm |
S. Leglaive | Lecture | ML: supervised discriminative learning |
S. Leglaive | Lab | Multinomial logistic regression |