photo

Simon Leglaive

Assistant Professor
CentraleSupélec, IETR (UMR CNRS 6164)

simon.leglaive@centralesupelec.fr
+33 (0)2 99 84 45 82
CentraleSupélec - Rennes Campus
Avenue de la Boulaie
CS 47601
F-35576 Cesson-Sévigné Cedex
Google Scholar
Twitter

Bayesian methods for machine learning

This page includes the material of the "Bayesian methods for machine learning" elective course for 2nd-year engineering students at CentraleSupélec.

Agenda

Lecture Fundamentals of Bayesian modeling and inference
Lecture Fundamentals of machine learning
Lecture Bayesian networks and inference in latent variable models
Lecture Factor analysis
Practical Gaussian mixture model
Lecture Variational inference
Practical Bayesian linear regression
Lecture Markov chain Monte Carlo
Practical Sparse Bayesian linear regression
Lecture Deep generative models
Lecture Revisions

Fundamentals of Bayesian modeling and inference

Key concepts:

Material:

Fundamentals of machine learning

Key concepts:

Material:

Bayesian networks and inference in latent variable models

Key concepts:

Material:

Factor analysis

Key concepts:

Material:

Gaussian mixture model

Material:

Variational inference

Key concepts:

Material:

Bayesian linear regression

Material:

Markov chain Monte Carlo

Key concepts:

Material:

Sparse Bayesian linear regression

Material:

Deep generative models

Key concepts:

Material: